Как сделать светодиод ярче

Как сделать светодиодные мощные дневные ходовые огни (LED-ДХО)

как сделать светодиод ярче
 18 июль 2016  Лада.Онлайн    53 155     

В настоящее время вариантов реализации дневных ходовых огней из светодиодов огромное множество, но добиться яркого свечения и равномерного рассеивания света от диодов получается только при помощи нескольких способов. Расскажем простой метод изготовления сверхярких ДХО, используя легкодоступные материалы.

Потребуется

  1. Светодиоды. Лучше всего использовать текстолит, на который напаиваются светодиоды (например, SMD 3528). Более простой вариант — светодиодная лента с большим количеством светодиодов (не менее 120 светодиодов на 1 метр). См. каталог AliExpress.
  2. Светорассеиватель, который хорошо рассеивает свет (толщиной не менее 2 мм).

    Отлично подойдет органическое стекло (оргстекло или PLEXIGLAS) белого цвета, под названием «молочный акрил». Купить его можно в рекламных агентствах, занимающихся наружной рекламой.

  3. Светоотражающая окантовка (толщиной 10 мм).

    Подойдет кусок хромированного алюминия (например, от канистры с моторным маслом ZIC) или алюминий на самоклеящейся основе (типа скотча).

Как сделать светодиодные яркие ходовые огни

  1. Вырезаем светорассеиватель подходящей формы (это могут быть кольца или полукольца по типу ангельских глазок, загнутые или прямые линии), используя пилку по металлу или дремель.
  2. Обклеить внутренние и внешние стороны светорассеивателя светоотражателем. Если выбрали куски алюминия, то приклеиваем его клеем (например, эпоксидным).
  3. Вставляем в получившееся углубление светодиодную ленту или плату из текстолита со светодиодами.

Как установить LED-ДХО

Разбираем блок-фару (на примере XRAY, Priora или Granta/Kalina 2) и приклеиваем самодельные LED-ДХО к маске (внутренней подложке фары) при помощи клея (например, эпоксидного). Провода аккуратно укладываем и фиксируем, чтобы во время вибрации они не выскочили из своих посадочных мест.

Как подключить дневные ходовые огни

Если нужно, чтобы светодиодные ходовые огни включались вместо габаритов, то подключать их следует вместо габаритных огней. Если хотите правильно подключить ходовые огни, чтобы они удовлетворяли требования ГОСТ, тогда воспользуйтесь этой схемой. Не забывайте про стабилизатор напряжения для ходовых огней.

Стоит отметить, что такой тюнинг фар подойдет не только для всех автомобилей Лада (XRAY, Веста, Ларгус, Гранта, Калина, Приора или Нива 4х4), но может использоваться и на иномарках.

Получившиеся светодиодные ДХО, будут иметь равномерное и яркое свечение, которое не сравнить с ангельскими глазками, сделанных из трубок (оргстекло).

Напомним, более простой способ тюнинга фар — установить гибкие ДХО.

Источник: https://xn--80aal0a.xn--80asehdb/do-my-self/tuning/tuning-lada-vesta/1426-kak-sdelat-svetodiodnye-moschnye-dnevnye-hodovye-ogni-led-dho.html

Характеристики светодиодов для фонариков. Ремонт и увеличение мощности

как сделать светодиод ярче

Рассмотрим светодиодную продукцию, начиная от старых 5-мм, до сверхъярких мощных светодиодов мощность которых доходит до 10 Вт.

Чтобы выбрать «правильный» фонарик для своих нужд, нужно разобраться в том какие бывают светодиоды для фонариков и их характеристики.

Какие диоды используются в фонариках?

Мощные светодиодные фонари начались с устройств с матрицей 5-мм.

LED фонари в совершенно разных исполнениях, от карманных до кемпинговых, получили широчайшее распространение в середине 2000-х. Их цена заметно снизилась, а яркость и долгий срок службы от одного заряда батареек сыграли свою роль.

5-ти миллиметровые белые сверхъяркие светодиоды потребляют от 20 до 50 мА тока, при падении напряжения 3.2-3.4 вольта. Сила света – 800 мкд.

Очень хорошо показывают себя в миниатюрных фонариках-брелках. Маленький размер позволяет носить такой фонарик с собой. Питаются они либо от «мини-пальчиковых» батареек, либо от нескольких круглых «таблеток». Часто используются в зажигалках с фонариком.

Вот какие светодиоды в китайских фонариках устанавливаются уже много лет, но их век постепенно истекает.

В поисковых фонарях при большом размере отражателя есть возможность смонтировать десятки таких диодов, но такие решения постепенно отходят на второй план, а выбор покупателей падает в пользу на фонарей на мощных светодиодах типа Cree.

Поисковый фонарь на 5мм светодиодах

Такие фонари работают от батареек типа АА, ААА или аккумуляторов. Стоят недорого и проигрывают как в яркости, так и в качестве современным фонарям на более мощных кристаллах, но об этом ниже.

В дальнейшем развитии фонарей производители перебрали множество вариантов, но рынок качественной продукции занимают фонари с мощными матрицами или дискретными светодиодами.

Какие светодиоды используют в мощных фонариках?

Под мощными фонарями подразумеваются современные фонари различных типов начиная от тех, что размером с палец, заканчивая огромными поисковыми фонарями.

В такой продукции в 2017 году актуальна марка Cree. Это название американской компании. Её продукция считается одной из наиболее передовых в области светодиодной техники. Альтернативой являются LED от производителя Luminus.

Такие вещи значительно превосходят светодиоды с китайских фонариков.

Какие светодиоды Cree в фонариках устанавливаются наиболее часто?

Модели носят название состоящие из трёх четырёх символов, разделённых дефисом. Так диоды Cree XR-E, XR-G, XM-L, XP-E. Модели XP-E2, G2 чаще всего используются для небольших фонариков, а XM-L и L2 – очень универсальные.

Их используют, начиная от т.н. EDC фонарей (для повседневного ношения) – это маленькие фонари размером меньше ладони, до серьёзных поисковых фонарей большого размера.

Давайте рассмотрим характеристики мощных светодиодов для фонариков.

характеристика светодиодов для фонарей – это световой поток. От неё зависит яркость вашего фонаря и количество света, которое может дать источник. Разные светодиоды, потребляя одинаковое количество энергии, могут существенно отличаться по яркости.

Рассмотрим характеристики светодиодов в больших фонариках, прожекторного типа:

Продавцы часто указывают не полное название диода, его типа и характеристики, а сокращенную, несколько иную цифробуквенную маркировку:

  • Для XM-L: T5; T6; U2;
  • XP-G: R4; R5; S2;
  • XP-E: Q5; R2; R;
  • для XR-E: P4; Q3; Q5; R.

Фонарь может так и называться, «Фонарь EDC T6», информации в такой краткости более чем достаточно.

Ремонт фонариков

К сожалению цена таких фонариков довольно большая, как и самих диодов. И не всегда есть возможность приобрести новый фонарь, в случае поломки. Давайте разберемся как поменять светодиод в фонарике.

Для ремонта фонарика необходим минимальный набор инструментов:

  • Паяльник;
  • флюс;
  • припой;
  • отвёртка;
  • мультиметр.

Чтобы добраться до источника света нужно отвинтить головную часть фонаря, она обычно закреплена на резьбовом соединении.

В режиме проверки диодов или измерения сопротивления проверьте исправность светодиода. Для этого прикоснитесь щупами черным и красным к выводам светодиода, сначала в одном положении, а затем поменяйте местами красный и черный.

Если диод исправен – то в одном из положений будет низкое сопротивление, а в другом – высокое. Таким образом вы определяете, что диод исправен и проводит ток только в одном направлении. Во время проверки диод может излучать слабый свет.

В противном случае в обеих положениях будет короткое замыкание или высокое сопротивление (обрыв). Тогда нужна замена диода в фонаре.

Теперь нужно выпаять светодиод из фонаря и, соблюдая полярность, впаять новый. Будьте внимательны при выборе светодиода, учтите его потребление тока и напряжение, на которое тот рассчитан.

Если вы будете пренебрегать этими параметрами – в лучшем случае фонарик будет быстро садиться, в худшем – драйвер выйдет из строя.

Драйвер – это устройства для питания светодиода стабилизированным током от разных источников. Промышленно изготавливаются драйвера для питания от сети 220 вольт, от автомобильной электросети – 12-14.7 вольт, от Li-ion аккумуляторов, например, типоразмера 18650. Драйвером оборудовано большинство мощных фонарей.

Увеличиваем мощность фонаря

Если вас не устраивает яркость вашего фонаря или вы разобрались как заменить светодиод в фонарике и захотели его модернизировать, прежде чем покупать сверхмощные модели изучите основные принципы работы LED и ограничения в их эксплуатации.

Диодные матрицы не любят перегрева – это главный постулат! А замена светодиода в фонарике на более мощный может привести к такой ситуации. Обратите внимание на модели, в которые устанавливаются более мощные диоды и сравните со своей, если они подобны по размерам и конструктиву – меняйте.

Если ваш фонарь меньше — потребуется дополнительное охлаждение. Подробнее о изготовлении радиаторов своими руками мы писали здесь.

Если вы попытаетесь установить в миниатюрный фонарик-брелок такой гигант, как Сree MK-R, он у вас быстро выйдет из строя от перегрева и это будут зря потраченные средства. Незначительное повышение мощности (на пару ватт) допустимо без модернизации самого фонарика.

В остальном процесс замены марки светодиода в фонарике на более мощную – описан выше.

Фонари Police

Они зарекомендовали себя на протяжении многих лет и с каждой новой моделью этих фонарей спрос не утихает. Новинкой на отечественном рынке стала модель с электрошокером.

LED фонарик Police с шокером

Такие фонари ярко светят и могут выступать в роли средства самообороны. Однако и в них случаются проблемы со светодиодами.

Как заменить светодиод в фонарике Police

Широкий модельный ряд очень трудно охватить в рамках одной статьи, но можно дать общие рекомендации по ремонту.

  1. При ремонте фонаря с электрошокером будьте аккуратны, желательно используйте резиновые перчатки, чтобы избежать удара током.
  2. Фонари с пылевлагозащитой собраны на большом количестве винтов. Они отличаются по длине, поэтому делайте пометки откуда вы выкрутили тот или иной винт.
  3. Оптическая система фонарика Police позволяет регулировать диаметр светового пятна. При разборке на корпусе сделайте отметки в каком положении стояли детали перед снятием, иначе будет трудно поставить блок с линзой обратно.

Замена светодиода, блока преобразователя напряжения, драйвера, аккумулятора возможна с применением стандартного набора для пайки.

Какие светодиоды стоят в китайских фонариках?

Многие товары сейчас покупаются на aliexpress, где можно найти как оригинальную продукцию, так и китайские копии, которые не соответствуют заявленному описанию. Цена за такие приборы бывает сопоставимой с ценой на оригинал.

В фонарике, где заявлен светодиод Cree, его может на самом деле не быть, в лучшем случае будет стоять диод откровенно другого типа, в худшем такой, который внешне будет трудно отличим от оригинала.

Что это может за собой повлечь? Дешевые светодиоды выполняются в низкотехнологичных условиях и не выдают заявленной мощности. Имеют низкий КПД, от того у них усиленный нагрев корпуса и кристалла. Как уже было сказано, что перегрев – самый злой враг для Led приборов.

Так происходит потому, что при нагревании через полупроводник увеличивается ток, вследствие чего нагрев становится еще сильнее, мощности выделяется еще более, лавинообразно это приводит к пробою или обрыву светодиода.

Если постараться и потратить время на поиск информации, можно определить оригинальность продукции.

Сравните оригинал и подделку cree

LatticeBright – это китайский производитель светодиодов, который делает продукцию очень похожей на Cree, наверное это совпадение дизайнерской мысли (сарказм).

Сравнение китайской копии и оригинала Cree

На подложках эти клоны выглядят следующим образом. Можно заметить разнообразие форм подложек для светодиодов, производимое в китае.

Определение подделки по подложке для LED

Подделки изготавливаются довольно умело, многие продавцы не указывают об этом «бренде» в описании товара и о том, где произведены светодиоды для фонарей. Качество таких диодов не самое худшее среди китайского барахла, но и далеко от оригинала.

Установка светодиода вместо лампы накаливания

У многих в старых вещах пылятся коногонки или фонари на лампе накаливания и вы можете легко сделать его светодиодным. Для этого есть либо готовые решения, либо самодельные.

С помощью разбитой лампочки и светодиодов, если добавить немного смекалки и припоя, можно сделать отличную замену.

Железный бочонок в данном случае нужен для улучшения отвода тепла от LED. Далее нужно припаять все детали друг к другу и закрепить клеем.

При сборке будьте аккуратны – избегайте замыкания выводов, в этом поможет термоклей или термоусадочная трубка. Центральный контакт лампы нужно распаять – образуется отверстие. Продеть через него вывод резистора.

Дальше нужно припаять свободный вывод светодиода к цоколю, а резистора к центральному контакту. Для напряжения 12 вольт нужен резистор 500 Ом, а для напряжения в 5 В – 50-100 Ом, для питания от Li-ion 3.7В аккумулятора – 10-25Ом.

Как сделать из лампы накаливания светодиодную

Подобрать светодиод для фонарика гораздо сложнее чем его заменить. Нужно учитывать массу параметров: от яркости и угла рассеивания, до нагрева корпуса.

Кроме того, нельзя забывать об источнике питания для диодов. Если вы освоите все описанное выше – ваши приборы будут светить долго и качественно!

Оцените, пожалуйста, статью. Мы старались:) (18 4,78 из 5)

Источник: https://SvetodiodInfo.ru/texnicheskie-momenty/xarakteristiki-svetodiodov-dlya-fonarikov.html

Сверхяркие светодиоды: особенности монтажа, питания, конструкции

как сделать светодиод ярче

Осветительными приборами, где в качестве источников света используются сверхяркие светодиоды, уже никого не удивишь. Спрос на такие устройства неизменно растет, это напрямую связано с низким энергопотреблением этих приборов. Учитывая, что на освещение тратится около 25-35% потребляемой электроэнергии, экономия будет весьма ощутимой.

Различные виды сверхярких светодиодных источников освещения

Но учитывая относительно высокую стоимость сверхярких светодиодов, в силу их конструктивных особенностей, говорить о полном переходе на этот тип освещения еще не своевременно. По мнению специалистов, этот процесс займет от 5 до 10 лет, именно столько понадобится на отладку и внедрение новых технологий.

Кратко об эффективности

Эффективностью осветительного прибора принято считать соотношение вырабатываемого светового потока (измеряется в люменах) к потребляемой электроэнергии (ватт). Качественная лампа с нитью накала имеет эффективность около 16 люменов на ватт, флуоресцентная (энергосберегающая) — в четыре раза больше (64 лм/Вт), для длинных дневных ламп этот показатель в районе 80 лм/Вт.

КПД сверхярких светодиодов, выпускающихся массово на текущий момент, примерно такой же, как у ламп дневного света. Обратите внимание, что мы говорим именно про массовую продукцию. Что касается теоретического предела для сверхярких светодиодных источников, то он определен порогом в 320 лм/Вт.

Как обещают многие производители, в ближайшие несколько лет КПД можно будет повысить до уровня 213 лм/Вт.

Влияние особенностей конструкции на стоимость

Для изготовления сверхярких светодиодных источников света может применяться один из двух способов:

  • чтобы получить свет, близкий по спектру к белому, используются три кристалла установленных в одном корпусе. Один красный, второй синий и третий зеленый;
  • применяется кристалл, излучающий в голубом или ультрафиолетовом спектре, он подсвечивает линзу покрытую люминофором, в результате излучение преобразуется в свет, близкий по спектру к природному.

Не смотря на то, что первый вариант более эффективен, его реализация обходится несколько дороже, что отрицательно отражается на распространенности. Помимо этого спектр света, излучаемый таким источником, отличается от природного.

У приборов, изготовленных по второй технологии, меньше эффективность. Стоит также учитывать, что люминофор содержит в себе сложный по составу композит на основе церия и иттрия, которые сами по себе стоят недешево. Собственно, этим и объясняется относительно высокая стоимость сверхярких светодиодов белого света. Конструкция такого устройства показана на рисунке.

Устройство сверхяркого светодиода

Обозначения:

  • А – печатный проводник;
  • В – основание с повышенной теплопроводимостью;
  • C – защитный корпус устройства;
  • D – паста-припой;
  • E – кристалл светодиода, излучающий ультрафиолетовый или голубой свет;
  • F –люминофорное покрытие;
  • G – клей (может быть заменен эвтектическим сплавом);
  • H – провод, соединяющий кристалл и вывод;
  • K – отражатель;
  • J – теплоотводящее основание;
  • L – вывод питания;
  • M – диэлектрическая прослойка.

Особенности монтажа

На работу сверхярких светодиодов оказывает влияние степень нагрева кристалла и самого p-n перехода. От первого напрямую зависит срок эксплуатации устройства, от второго – уровень светового потока. Поэтому для длительной службы сверхярких светодиодов необходимо организовать надежный теплоотвод, делается это при помощи радиатора.

Следует принять во внимание, что теплопроводящие основания этих полупроводников, как правило, проводят электричество. Поэтому когда устанавливается несколько элементов на один радиатор,  следует позаботиться о надежной электроизоляции оснований.

Хороший теплоотвод значительно увеличивает срок службы сверхярких светодиодов

Остальные правила монтажа практически такие же, как у обычных диодов, то есть необходимо соблюдение полярности, как при установке самой детали, так и подключении питания.

Особенности питания

Учитывая относительно высокую стоимость сверхярких светодиодов, очень важно использовать для их работы надежные и качественные источники питания, поскольку эти полупроводниковые элементы критичны к токовой перегрузке.

После нештатного режима прибор может остаться работоспособным, но мощность излучаемого светового потока существенно сократится. Помимо этого такой элемент с большой вероятностью станет причиной поломки и других, совместно подключенных светодиодов.

Прежде, чем говорить о драйверах для сверхярких светодиодов, коротко расскажем об особенностях их питания. В первую очередь необходимо принять во внимание следующие факторы:

  • мощность светового потока, излучаемая этими элементами, напрямую зависит от величины протекающего через них электротока;
  • для сверхярких светодиодов характерна нелинейная ВАХ (вольт-амперная характеристика);
  • температура оказывает сильное влияние на ВАХ этих полупроводниковых приборов.

Ниже показано изменение ВАХ при температуре полупроводникового элемента (сверхяркий smd-светодиод) 20 °С и 70 °С.

Изменение характеристик от влияния температуры

Как видно из графика, при подаче на полупроводник стабильного напряжения величиной 2 В, электроток, проходящий через него, меняется в зависимости от температуры. При нагреве кристалла 20°С он будет равен 14 мА, когда температура повысится до 70°С, этот параметр будет соответствовать 35 мА.

Результатом такой разницы будет изменение мощности светового потока при одном и том же питающем напряжении. Исходя из этого, необходимо стабилизировать не напряжение, а электроток, проходящий через полупроводник.

Такие блоки питания называются светодиодными драйверами, они представляют собой обычные стабилизаторы тока. Это устройство можно приобрести готовое или собрать самостоятельно, в следующем разделе мы приведем несколько типичных схем драйверов.

Самодельный светодиодный драйвер

Предоставим вашему вниманию несколько вариантов драйверов на основе специализированных микросхем компании Monolithic Power System, использование которых существенно упрощает конструкцию. Схемы приводятся в качестве примера, полное описание типового включения можно найти в даташит на микросхемы.

Вариант первый на базе понижающего преобразователя МР4688.

Пример включения МР4688

Данный драйвер может работать с напряжениями от 4,5 до 80 В, порог максимального выходного электротока 2 А, что позволяет запитать светильник на сверхярких светодиодах большой мощности. Уровень электротока, проходящего через светодиоды, регулируется сопротивлением R . Реализация ШИМ-диммирования с частотой 20 кГц позволяет плавно изменять протекающий через светодиод электроток.

Второй вариант драйвера на базе микросхемы МР2489. Ее компактный корпус (QFN8 или TSOT23-5) делает возможным размещение драйвера в цоколе MR16, используемый галогенными лампами, что позволяет заменить последние светодиодными. Типовая схема подключения МР2489 показана на рисунке.

Драйвер на базе МР2489

Приведенная выше схема позволяет включать два параллельных светодиода, у каждого из которых рабочий ток 350 мА.

Последний вариант драйвера на базе микросхемы МР3412, который может быть использован в переносных фонариках. Отличительная особенность такой схемы – возможность работы от пальчикового элемента питания АА.

Драйвер для фонарика на базе МР3412

Источник: https://www.asutpp.ru/sverxyarkie-svetodiody.html

Хотите вечных светодиодов? Расчехляйте паяльники и напильники. Или домашнее освещение самодельщика

Когда-то давным давно, когда я еще учился в школе, а на дворе был конец перестройки, мой дядя (заронивший в меня интерес к электронике) припер домой сумку вынесенного через проходную завода добра. Собственно, такие сумки он приносил домой вполне регулярно, пополняя запасы, хранившиеся в диване. Диван этот, как вы догадываетесь, манил, и иногда в отсутствии дяди я в него заглядывал с восторгом.

Но кое-что из этой сумки в диван не попало, а попало в мои руки. Дядя мне вручил пачку — штук десять — макетных плат, и новенькую нераспечатанную коробку дефицитных, да и не дешевых в то время светодиодов. Причем светодиоды были не простые: вместо привычной маркировки АЛ-что-то там на коробке стоял код из четырех цифр, как я понял — они были экспериментальные. И они были яркие. По сравнению с привычными АЛ307 или АЛ310 — просто ослепительные.

И их к тому же было много — штук 50.

Идея «куда это богатство применить» возникла моментально: светодиоды были распаяны на одной из макетниц — сколько влезло (влезли не все), и из них вышел великолепный красный фонарь для печати фотографий, который абсолютно не засвечивал фотобумагу даже в упор. Правда, тут же я узнал о том, что «светодиоды не греются» — это вранье, так что ток пришлось снизить вдвое, с 10 мА на светодиод до 5. А еще через полгода успешной эксплуатации узнал и о том, что «светодиоды не перегорают» — это тоже неправда: первый светодиод в сборке погас, оказался пробит. А со временем и весь фонарь пришел в негодность. И вот сейчас я снова слышу из каждого утюга про «вечные» светодиодные лампочки, а дома за неполный год перехода на светодиодные лампы перегорела уже третья по счету.

Почему светодиодные лампочки не вечны?

Да потому что ничего нет вечного. Светодиод, к тому же — штука тонкая. Буквально. В его структуре имеются слои толщиной в считанные нанометры, образующие квантовые ямы.

Диффузия и электромиграция к таким слоям безжалостны — они размывают их, создают дефекты, постепенно снижая световыход и увеличивая вероятность катастрофы в масштабах крохотного кристалла, в котором, к слову, выделяется световая и тепловая энергия, удельное значение которой в расчете на кубический сантиметр p-n перехода можно сравнить разве что с ядерным взрывом (немного утрировано, но сами прикиньте плотность энерговыделения). Чем светодиод горячее, тем все эти негативные процессы будут идти быстрее. А он, как мы уже в курсе, греется. Греется даже тогда, когда через него идет ток в 10 миллиампер. А тем более — когда это мощный прибор, ток через который как минимум 100 мА, а бывает — и ампер, и даже три ампера. И в тепло, не смотря на всю энергетическую эффективность светодиодов, переходит значительная доля от подведенной к светодиоду электроэнергии. От двух третей до трех четвертей. А куда охлаждаться светодиодам в светодиодной лампочке? А некуда, по большому счету. Светодиод сам по себе спроектирован, чтобы его можно было охлаждать. Кристалл припаян к массивному основанию из меди или высокотеплопроводной керамики, у этого основания есть специальная площадка для пайки к внешнему теплоотводу, в роли которой — плата с алюминиевой или медной подложкой. А подложка эта, по идее, должна быть через термопасту прикручена к хорошему радиатору с большой площадью. А прикручена она в лучшем случае к металлическому корпусу светодиодной лампы, площадь которого совершенно недостаточна для рассеивания более чем нескольких ватт тепла, да еще и в закрытом плафоне. В худшем — корпус вообще пластмассовый, и в этот корпус еще попадает тепло от драйвера и от не вышедшего наружу и потерявшегося в недрах лампочки света. Вот и жарятся светодиоды при температуре, превышающей 100, а то и 130°С. И, кстати, не только светодиоды, но и драйвер, который тоже нередко выходит из строя.

Что делать-то?

Одно из трех. Либо мы, оставив на месте старую люстру, ставим в нее лампочки меньшей мощности. Они меньше будут греться и у них больше шансов прожить долго.

Разумеется, в комнате станет темно: мы вернемся во времена, когда в люстре из экономии и пожаробезопасности стояли лампочки по 25 ватт, от которых ушли, поставив на их место пятнадцативаттные энергосберегайки, сделавшие из темной берлоги светлое помещение, в котором приятно находиться. Либо мы покупаем новую люстру, в которую можно вкрутить больше лампочек.

Так мы останемся со светлой комнатой и получим (возможно) более долгую жизнь лампочек. Только на люстру, как и на лампочки, придется потратиться. И, наконец, третий вариант: мы забываем само понятие «светодиодная лампа», как страшный сон и ставим на место люстры специально спроектированный светодиодный светильник.

Продуманный и в плане хорошего использования светового потока (у светодиодных ламп типа «висит груша — нельзя скушать» с этим в приборах, рассчитанных на лампы накаливания, не всегда хорошо — они плоховато светят вбок и назад), и в плане качественного охлаждения.

Рынок

На рынке есть такие светильники. Но по большей части они во-первых, дорогие, а во вторых — страшные. Этакие промышленные штуковины, которые уместны в гараже, цеху, в торговом зале гипермаркета, в офисе, наконец — но не в квартире. Нет, есть и красивые, и дизайнерские очень эффектно выглядящие светильники. Но — во-первых, опять же, цена, а во-вторых, в жертву дизайну принесено охлаждение.

Так, классическая китайская светодиодная люстра-блин — это пятьдесят ватт светодиодов, сидящих на алюминиевой плате в виде кольца диаметром 45 см и шириной сантиметров 8. И — все. Никакого тебе корпуса с оребрением, ничего. И опять-таки, плата в почти наглухо закрытом корпусе. Ну хоть драйвер чуть наружу вынесен. Вердикт: жить будет, как светодиодная лампочка.

Только когда сдохнет, менять придется не лампочку за 150 рублей, а люстру за пять-десять тысяч. В общем, выход, кажется, один: умелые руки.

Самодельный светильник: проектирование

Сразу скажу: светильник будет не на светодиодной ленте и без блютуса. Для начала, оценим, сколько нам нужно света. Тут дело вкуса, но я люблю, когда в жилище светло. Всякий интимный полумрак я люблю в особых случаях, в романтичной обстановке, но в обычной жизни он навевает тоску. Считать можно по-всякому, но я воспользуюсь тем фактом, что с люстрой с пятью энергосберегайками по 15 ватт, дававшими каждая по 950 лм, в комнате было хорошо. То есть 5 килолюмен нам будет достаточно.

Теперь идем на сайт Cree, находим там Datasheet на модули CXA2530. Почему именно на них? Да потому что у меня есть несколько штук таких модулей, и с ними удобно работать: к ним просто припаиваются провода, а сами модули сажаются прямо на радиатор с помощью прилагающегося фланца. А еще их несложно купить — известный китайский интернет-магазин в помощь. У имеющихся у меня модулей бин светового потока Т4, это соответствует номинальному световому потоку 3440-3680 лм.

Сразу 20% от этой цифры отнимаем — они потеряются на рассеивателе. Получаем световой поток 2750-2950 лм, а учитывая, что получается этот поток при мощности около 30 Вт, получаем потребную для освещения мощность (подведенную к светодиодам) около 50 Вт. Поскольку комната у нас длинная, мы уберем люстру из центра и сделаем два одинаковых светильника по 25 ватт.

Приняв КПД светодиодов за 25% (достаточно консервативная оценка — скорее всего, лучше, но уж точно не хуже), выясняем, что в каждом светильнике выделяется 18,75 Вт тепла. И наша задача — выбрать под это тепловыделение радиатор. Вот как мы это сделаем.

Будем исходить из максимальной температуры кристалла = 85°C и температуры окружающей среды = 35°C. То есть = 50°C.

Перепад температуры пропорционален рассеиваемой мощности, а коэффициент пропорциональности называется тепловым сопротивлением: , и измеряется оно в кельвинах (или градусах цельсия) на ватт. В нашем случае тепловое сопротивление кристалл-окружающая среда должно быть равно 2 °С/Вт.

Из чего же состоит тепловое сопротивление? Первый его компонент — это тепловое сопротивление, присущее самому корпусу светодиода. Фирма Cree не дает эту величину в даташите напрямую, предлагая воспользоваться странным графиком, но в ранних публикациях в журналах о выпуске новых светодиодных матриц указывалось значение 0,8 °С/Вт.

Второй компонент общей величины теплового сопротивления — это сопротивление, создаваемое слоем термопасты между корпусом и радиатором. В качестве термопасты мы возьмем старый-добрый Алсил-3, с теплопроводностью = 1,7-2 Вт/м*К. При слое пасты толщиной 50 мкм и площади теплорассеивающей поверхности 2,8 (площадь круга диаметром 19 мм под излучающей поверхностью матрицы) получаем = 0,105 °С/Вт.

Итак, на радиатор у нас остается 1,1 °С/Вт. Исходя из этой цифры, выбираем радиатор, накинув процентов 30 «на вранье», на растекание тепла от маленькой матрицы и на то, что радиатор будет неоптимально ориентирован в пространстве.

Например, нам подойдет профиль АВМ-076 размером сечения 176х40 мм с тепловым сопротивлением куска длиной 100 мм 0,5 °С/Вт. Нам хватит куска этого профиля длиной 80-100 мм. 100 мм — это стандартные куски, имеющиеся в продаже, 80 нужно заказывать у производителя (Виртуальная механика, virtumech.

ru), такой вариант выглядит несколько более эстетичным за счет меньшей ширины.

Осталось выбрать драйвер. Критерии для его выбора — это ток и рабочие пределы выходного напряжения. Мощность 25 Вт получается при токе около 0,7 А, напряжение на матрице при этом составит около 35-36 В.

Конструкция

Перебрав несколько вариантов конструкции светильника, я остановился на рассеивателе из матового полупрозрачного пластика, имеющем вид полуцилиндра. Форма эта получается простейшим способом — за счет крепления изогнутой пластины к боковым сторонам радиатора. Способ крепления достаточно произволен — на винтах с прижимными пластинами, на клею — я воспользовался красным двусторонним скотчем «Момент».

В качестве рассеивателя я применил рассеивающую пленку из подсветки разбитого ЖК монитора — она имеет очень хорошее светопропускание. Можно также заматировать абразивом пленку для печати на лазерном принтере или любую другую плотную пластиковую пленку. Матрица с предварительно припаянными проводами устанавливается с помощью комплектного фланца в центре радиатора с помощью двух винтов М3 (гайки использовать неудобно, так что придется поработать метчиком).

Перед приклеиванием рассеивателя свободную от матрицы плоскую поверхность радиатора рекомендуется оклеить алюминиевым скотчем или окрасить белой краской — это снизит потери света. По поводу термопасты — хотелось бы заметить, что использование темной термопасты не рекомендуется: она процентов на 10 снизит световой поток.

Я это хорошо заметил на двух экземплярах, один из которых я сделал с Алсилом-3, а на второй алсила не хватило и я воспользовался пастой из комплекта кулера фирмы Scythe, имевшей темно-серый цвет. Разница при измерении люксметром очевидна. Также нет смысла использовать более дорогие, чем алсил, термопасты с большей теплопроводностью: и на алсиле падает в худшем случае пара-тройка градусов, погоды они не сделают.

После сборки первого светильника (в котором я использовал радиатор от процессора Pentium II и который поселился в кухне, у него чуть меньшая мощность в районе 15 Вт), я принял решение ставить в светильники для комнаты не одну матрицу, а две — это «размазало» пятно света на рассеивателе и сделало свет более комфортным. Более разумно было бы в таком случае ставить менее мощные модули, скажем, CXA1820.

Модули соединил параллельно, нежелательных последствий в виде неравномерного распределения тока между ними это не вызвало — обе матрицы светятся на глаз одинаково. Но длину подводящих проводов я на всякий случай выровнял. Крепление к потолку у меня — с помощью коромысла из жесткой стальной проволоки диаметром 2 мм, концы которого продеты в отверстия в крайних ребрах радиатора и загнуты.

За центр коромысла зацеплен крючок, прикрепленный к потолку — такой длины, чтобы между натяжным потолком и радиатором оказалось расстояние в пару сантиметров. Драйвер спрятан за натяжным потолком. Если бы светильники делались до потолка, можно было бы в него запрятать и радиаторы. Поверхность радиатора можно покрасить в черный цвет перманентным маркером или тонким слоем из баллончика (толстым не надо — теплоизоляция). А можно и не красить, глаза он особо не мозолит.

Результаты

Светло. Под лампами на высоте столешницы — 450 лк, в середине комнаты 380 лк. Свет комфортный, цветопередача — вполне (правда, на кухне оказалось, что сырое мясо под этим светом выглядит, как-будто его слегка подкрасили черничным соком).

Радиаторы после многочасовой работы теплые, но не горячие. Мерцание равно нулю (заслуга качественных драйверов).

И по ценам: матрицы обошлись в 550 рублей каждая (курс с тех пор, конечно, поменялся), радиаторы — по 600 рублей, драйвера — по 250 рублей, пленка досталась бесплатно.

Итого — 2200+1200+500 = 3900 рублей. Плюс два-три часа работы.

Источник: https://habr.com/post/437420/

От чего зависит яркость свечения светодиода и как ее регулировать

Рядового потребителя при покупке осветительного прибора интересует не напряжение или ток, а яркость светодиода, так как она отличается от показателя других ламп. Внедрение новых технологий требует иного подхода к характеристикам светотехники.

  Основные параметры, в том числе яркость свечения, хорошие производители обозначают в маркировке, на упаковке, в технической документации.

Для правильного выбора необходимо знать значение букв и цифр, уметь определить, какой прибор допускает регулировку яркости, какой – нет.

Что такое яркость светодиода и в чем она измеряется

Яркостью свечения называют показатель света, равный соотношению силы светового потока к косинусу угла, под которым он излучается, и освещаемой площади.

Другое определение – освещенность в точке, перпендикулярной к источнику, к углу, в который заключен луч. Яркость свечения обозначается буквой «L», измеряется в милликанделах на метр в минус второй степени (кд*м-2).

У обычных светодиодов яркость 20-50 мкд, у сверхярких – до 20 000 мкд. От этого показателя зависит восприятие предметов глазами человека.

Если говорить о светодиодах, то у нихяркость свечения – это мощность (сила) света, измеряемая в ваттах и зависящаяот угла конуса, основание которого расположено на освещаемой площади, вершина –в источнике света. При равном излучении во всех направлениях яркость свечения будетсоотношением потока к пространственному углу (в градусах). Чаще всего градусыпереводятся в стерадианы: sr = 2 π (1 – cos θ/2), где θ – угол луча.

Параметры, влияющие на яркость

Насколько ярко будет отображаться освещаемый объект, зависит не только от светового потока. Яркость свечения зависит так же от плотности луча и чувствительности наблюдателя.

Сила тока

Во время работы сила тока на светодиодезависит от напряжения. При незначительном увеличении вольтажа электротокповышается многократно, вместе с ним и яркость свечения. Но этим параметромможно управлять, если включить в схему аналоговый или широко-импульсныймодулятор, обеспечивающий функцию диммирования. 

Зависимость яркости свечения идеального светодиода от электротока линейная. На практике зависит от потерь на выделении тепла и дифференциального сопротивления кристалла. Существует предел, после которого повышать ток нельзя из-за перегрева p-n-перехода, способного вывести LED из строя.

Технология

Светодиод – это источник света точечного типа, направленность луча определяет конструкция. Параметры меняются в зависимости от оптических свойств и наличия в приборе люминофора, рассеивателей и линз. Независимо от устройства интенсивность свечения регулируется минимальными изменениями тока.

У светодиода при высокой плотности луча(небольшом угле излучения) яркость свеяения увеличивается независимо от объемапотока.

Внимание! При покупке необходимо учитывать, что источник с тысячей милликандел и углом излучения 45 градусов будет давать такой же поток, как с углом 12 градусов, но при втором варианте луч будет ярче.

Площадь кристалла

Еще один показатель, от которогонапрямую зависит объем светового потока и яркость свечения – величинакристалла. Например, площадь СМД 3528 3,5х2,8 мм, площадь СМД 5630 – 5,6х3 мм,световой поток соответственно 6-8 и 50 люмен. Самые новые кристаллы отличаютсябольшими размерами и высокими показателями интенсивности свечения. Этообъясняется тем, что излучение в любом чипе зависит от величины р-n перехода.

Важно! При покупке необходимо знать, что неизвестные китайские производители это используют. Вместо больших кристаллов на 1 Вт они ставят маленькие на 0,75 или 0,5 Вт, при подаче заявленного тока их срок службы значительно сокращается или они перегорают.

Что можно узнать из маркировки

У именитых производителей маркировка достаточно длинная, поэтому размещается на упаковке или в технической документации. Ленты поставляются с маркировкой на катушке. Данные можно спросить у продавца, если их нельзя найти.

  Все о мощных светодиодах 3 W

Для обычных светодиодов не существует стандартных обозначений, каждый производитель использует свои. Яркость свечения всегда указывается в маркировке мощных ламп.

Источник: https://svetilnik.info/svetodiody/ot-chego-zavisit-yarkost-svecheniya-svetodioda.html

Как сделать светодиодную лампу своими руками

Благодаря своим многочисленным положительным качествам, надежности, практичности, светодиодные лампы практически с первых мгновений своего появления завоевали рынок.

Светильники со светодиодными источниками света имеют большой срок службы, не нагреваются при работе, потребляют минимальное количество энергии при высокой рассеиваемой мощности излучаемого светового потока. Особенность работы светодиодов связана с технологией изготовления p-n-перехода, выбора кристалла.

Современные технологии позволяют изготовить очень яркие светодиоды со световым потоком 4000 К, что намного больше, чем способны излучать даже экономичные люминесцентные лампы.

Выпускаются лампы с желтым или белым свечением, поэтому покупатели могут выбирать наиболее подходящие для своего помещения источники света. Желтые, имея температуру свечения 6000 К, создают теплое свечение, а белые с 4000 К – холодное.

Светодиодные лампы являются более выгодными по сравнению с лампами накаливания или «энергосберегающими», но из-за особенностей изготовления, своей конструктивной сложности они стоят дороже. Хотя, сравнивая конструкцию и технологичность люминесцентных источников света, можно сделать вывод, что производство светодиодных проще.

Светодиодный светильник 

Учитывая высокую цену на светодиодные лампы, многие хотят сделать ее своими руками, тем более для этого все необходимые детали можно приобрести на радиорынке. Чего не скажешь о ртутной лампе, в которой не только плата питания сложна, но и колба с газом является недоступным элементом. Поэтому, если хотите изготовить качественные светодиодные лампы для теплицы своими руками, то это можно сделать довольно просто.

Сфера применения

Преимущество светодиодных источников света заключается в универсальности. Производители выпускают различные по мощности излучения, форме и количеству элементов светодиодные матрицы или сами светодиоды. Поэтому можно конструировать светильники на свое усмотрение как на стандартный цоколь от разбитой лампы, так и на специализированный в соответствии с требованиями подключения к драйверу или плате управления.

Преимуществом светодиодных источников света является управляемость яркостью свечения путем изменения напряжения на его входе. Таким образом, можно получить оттенок от еле заметного до чрезмерно яркого. Это свойство дает возможность создавать много полезных вещей:

  • прожекторы;
  • уличные фонари;
  • ночные светильники;
  • индикаторы;
  • фитолампы или светодиодные лампы для растений своими руками;
  • подсветка торговых полок;
  • люстры.

Дачные строения на участке, подлежащие регистрации в 2019 году

Светодиоды получили применение во многих сферах благодаря своим практическим качествам. Они активно используются в промышленности, быту, медицине, детских дошкольных учреждениях.

Изготовление своими руками

Известно много различных форм светильников и систем подсветки, которые могут быть изготовлены своими руками в корпусе, а может быть использована готовая лента, что также весьма удобно. Например, при создании подсветки клавиатуры или полок в шкафу.

Что же потребуется для изготовления светильника на светодиодах? Долго размышлять не придется, потому что светодиодные источники света являются универсальными. Их можно подключать на переменное или постоянное напряжение любого номинала. Достаточно изготовить качественный драйвер или блок управления и грамотно расположить светодиоды на пластине.

Крепление и установка

Прежде чем приступать к изготовлению светодиодной лампы, стоит подумать над ее назначением. Если она будет устанавливаться в стандартный патрон, то для этого потребуется цоколь Е27, Е14, G9. Взять его можно с любой старой лампочки, например, от люминесцентной. Точно таким принципом руководствуются при освещении теплицы светодиодными лампами.

В зависимости от назначения светодиодные светильники также могут быть различными. Одни предназначены для общего освещения, для использования в качестве ночников или в качестве фитолампы для выращивания растений.

В первом случае для изготовления светильников используются яркие светодиоды холодного или теплого свечения, что наиболее предпочтительно.

С точки зрения влияния на зрение человека, лампы лучше покупать именно с желтым свечением, точно так же дело касается и выбора самих светодиодов.

А когда речь идет о ночнике или тусклой подсветки, то для его изготовления следует выбирать отличные от белого цвета или же использовать режимы свечения с низкой яркостью. Если же предстоит изготовить фитолампу для выращивания растений, то для этого лучше выбрать красный и синий цвета светового потока. Именно спектр этих оттенков оказывает благоприятное воздействие на рост и обеспечивает интенсивное развитие растений.

Как сделать фитолампу

Светодиодные лампы получили широкое применение, особенно часто их используют для выращивания растений в теплицах. Для этого применяется так называемая фитолампа. Ее особенность заключается в спектре света. Растения хорошо растут при красном, синем и желтом оттенках света.

Например, красный способствует лучшему фотосинтезу, синий стимулирует интенсивность роста на клеточном уровне, а желтый обогащает растение прочими немаловажными компонентами.

Поэтому светодиодные лампы своими руками станут идеальным вариантом, тем более, когда речь идет о выращивании растений.

Закваска капусты по лунным фазам: советы и рецепты

Но чтобы растение действительно интенсивно набирало рост в теплице, укреплялось и быстрее формировалось, необходимо выдерживать пропорцию количества красного света к синему в соотношении 1:3. И добавить чуточку желтого. Растение в таких условиях значительно крепче, выносливее и здоровее.

Поэтому если решите выращивать рассаду, то фитолампу можно изготовить своими руками. Для этого потребуется купить ленту или комбинировать красные и синие цвета светодиодов в светильниках для теплицы.

Такое освещение в теплице не потребует значительных материальных растрат, потому что цена материалов ниже, чем готовой фитолампы.

Благодаря возможности размещения источников освещения в любом удобном месте, можно сэкономить на электричестве. Например, ленту можно протянуть над самими растениями, исключая излишние растраты на освещение пространства всей теплицы.

Для изготовления лампы не потребуется покупать специальные светодиоды, для теплиц вполне подойдут рыночные или заказанные из интернет-магазина. В продаже имеются различные модели, важно, чтобы яркость была достаточной, а цвет соответствовал эффективному спектру.

Базовая конструкция

Когда речь идет об изготовлении своими руками светодиодного освещения для теплиц или для других определенных нужд, то тип конструкции выбирается исходя из особенностей его закрепления. Если предстоит устанавливать в стандартный навесной светильник с патроном на Е27, то, соответственно, лучше применить и стандартный цоколь.

Корпус лампочки можно изготовить из любого прозрачного материала. Но лучший эффект вы получите от непосредственного свечения без использования различных светофильтров. А ведь колбы и рассеиватели как раз таковыми и являются. Когда речь идет об изготовлении лампы для хозяйственных нужд, то красоту можно отложить на второй план.

Выбор источника питания

Светодиодные источники света являются универсальными. Их можно подключать на любое напряжение питания. Но только для осуществления этого потребуется изготовить необходимый драйвер или простейший блок питания, конструкцию устройства следует выбирать исходя из места обустройства освещения. В теплице практически всегда присутствует высокая влажность, поэтому блок питания должен быть герметичным.

На практике существует масса схем подключения светодиодов при изготовлении освещения теплицы своими руками с питанием как от сети постоянного напряжения 12В, так и к сети 220В с переменным током. Но на этом форматы питающих цепей не заканчиваются, потому что путем стандартных расчетов можно использовать любое напряжение.

Источник: https://1teplica.com/prochee/kak-sdelat-svetodiodnuyu-lampu-svoimi-rukami

Как сделать светодиод ярче

Светодиоды находят широкое применение практически во всех сферах жизни человека, особенно если он является счастливым обладателем собственного авто. С каждым днем все с большей активностью светодиоды вытесняют лампы накаливания.

Работают они достаточно просто, при пропускании тока через устройство, он излучает не когерентный свет. Отличаются от обычных ламп накаливания долговечностью, высоким КПД и низким потреблением тока. Применять их можно где угодно, зависит все от вашей фантазии.

В его корпусе расположен полупроводниковый кристалл, который светиться при прохождении через него тока.

Маломощные (0.07W)

Недолговечны, так как не имеют охлаждения. Они применяются в различных радио аппаратурах.

Мощные (1-3W)

Долговечны. При правильном использовании могут работать больше 10 лет. Практически не подвержены перегрузкам.

Светодиодные модули (0.7-0.9W)

Это алюминиевая пластина в которой находится несколько диодов. Её главное отличие — весьма недешевая стоимость

Светодиодные ленты

Маломощные светодиоды, которыми можно подсветить бардачок в машине или панель приборов, не более. Такие конфигурации, как правило, недолговечны.

Как сделать самим?

В данном видео, вам, покажут как сделать яркие светодиоды и установить их на авто.

Главное, нужно помнить, что светодиод – это не обычная лампа накаливания. При замене единицы устройства на лампу нужно быть очень внимательным, так как ваши неправильные действия с электрической частью автомобиля могут привести к весьма серьезным последствиям.

В отличие от обычных ламп накаливания, они потребляют на 80% меньше мощности, при этом имеют практически одинаковый световой поток. Благодаря этому снижается нагрузка на аккумулятор и генератор.

От правильного выбора напряжения будет зависеть яркость осветителя. Также у разных цветов, разное напряжение, например, у красного и желтого 2-2.5В, а у зеленых синих 3-3.8В. Для правильной работы диодов нужно проверять их работу на заглушенном двигателе и заведенном.

Если вы собираетесь заменить обычную лампочку на светодиод на приборной панели, то нужно использовать узконаправленные диоды, на конце они имеют увеличительную линзу. Также нужно обратить внимание на тип линз.

При правильной установке, он может проработать до 2500 часов при непрерывном использовании. Подключение их не трудоемкое занятие, так как на них отсутствует нить накаливания, поэтому это не займет много времени. И вам не нужно обладать знаниями работы в радиотехнике.

Еще один плюс светодиода в том, что вы можете устанавливать его в любом положении, в любом цвете и размере. Если вы просто включите диод в сеть автомобиля, то он просто перегорит.

Они подключаются к аккумулятору через девятивольтовый стабилизатор, который обеспечит последовательно-параллельное подключение. Ни в коем случае нельзя подключать напрямую, так как напряжение в сети автомобиля 12В, а у них в среднем 3-3.5В.

Подключение светодиодов

Из данного видео ролика, вы узнаете, как подключить светодиодную ленту на стоп-сигналы ВАЗ 2109. Смотрим!

  1. Самым легким способом подключить светодиод к вашему автомобилю считается применение кластера (светодиодная панель), которые рассчитаны на 12В. Вы просто подключаете к сети автомобиля и радуетесь как все это легко, и как красиво они горят.
    Но есть одно очень большое «но» — при увеличении оборотов двигателя яркость диодов будет изменяться. Хорошо кластеры будут работать только, если в вашем автомобиле 12,5 В, если меньше, то гореть они будут тускло;
  2. Второй способ немного сложнее. Здесь вам придется соединить между собой кластеры, то есть сделать последовательную цепь, подключение плюса первого светодиода к минусу второго, и сделать два вывода к питанию автомобиля. Но их нужно высчитать. Например, если они предназначены для 12-14 В, то нужно 3 светодиода, в итоге 3,5 Вольт каждый светодиод, их всего три, 3,5*3=10,5 Вольт. Подключать их пока не нужно. Включите в последовательную цепь гасящий резистор примерно 100-150 Ом. С мощностью 0,5 Вт. Найти вы их сможете в магазинах радиодеталей.

Но он имеет такой же недостаток, о котором говорилось ранее, при увеличении оборотов изменяется яркость осветительного прибора. Но если вы поставите больше трех диодов в цепи, то можете избежать этого недостатка.

Их нужно соединять параллельно, то есть соединить несколько цепочек (три диода, один резистор – одна цепочка), и здесь плюс нужно подключать к плюсу следующего светодиода, а минус соответственно к минусу.

При подключении одного светодиода нужен резистор на 550 Ом, при двух 300 Ом, при трех 150 Ом, если знаете закон Ома, то все должно быть понятно. Далее, вам понадобится мультиметр. Например, у вас есть светодиод 3.5В, с током 20 мА, и вы хотите подключить его к автомобилю. Нужно измерить мультиметром напряжение в том месте, где вы собираетесь установить его.

Так выглядят безцокольные светодиоды

На разных частях авто напряжение может быть разное. Допустим после измерения у вас 13 В. Далее отнимаем 13 В от 3,5 В (напряжение светодиода), получается 9,5 В. В формуле ток должен измеряться в амперах, 20 мА = 0,02 Ампер.

Теперь по формуле вычисляем сопротивление: 9,5В/0,02А = 475 Ом. Для предотвращения нагрева резистора, нужно определить его мощность. Для этого 9,5 В (напряжение, гасящее резистор) * 0,02 (ток, проходящий через него) = 0,19 Вт. Нужно взять с небольшим запасом, примерно 0,5-1 Вт.

Далее переключаем режим в мультиметре на измерение тока, для того чтобы в разрыве между светодиодом и резистором измерить ток в цепи. На мультиметре ставим на 10 А, подключаем плюс аккумулятора к плюсу прибора, минус прибора к плюсу светодиода. Мультиметр должен показать примерно 20 мА может быть меньше, так как на резисторах и светодиодах присутствует небольшой разброс параметров.

Чем больше тока будет поступать в осветительный прибор, тем ярче он будет светить. Но яркость сказывается на сроке службы светодиода, во избежание не устанавливайте ток выше 20 мА, оптимальное значение 18 мА.

Регулировка зазоров клапанов ВАЗ 2106. Как сделать всё правильно и что для этого нужно, вы сможете узнать на нашем сайте.

, о поклейке карбоновой плёнкой авто, находится в этой статье, так же здесь, находится очень интересный и полезный материал!

Источник: https://kekso.ru/avtovaz/kak-sdelat-svetodiod-jarche/

Делаем светодиод своими руками

Вопрос: «Можно ли сделать светодиод своими руками?» среди рядовых мастеров наверняка вызовет удивление. Казалось бы, зачем придумывать то, что давно придумано и серийно выпускается? Однако существует такая категория людей, которые обожают мастерить что-то необычные. Для них конструирование светодиода – это возможность повторить эксперименты О.В. Лосева, проводимые около ста лет назад, и шанс доказать себе и друзьям реальность создания светодиода в домашних условиях.

Что понадобится

Основной конструкционный материал – кусочек карбида кремния. В обычном магазине его не купишь, но если постараться, то можно найти в интернете среди частных объявлений. Кроме него понадобится иголка от булавки, соединительные провода, два мебельных гвоздя с широкой шляпкой и регулируемый источник напряжения (0-10 вольт). Также понадобится припой и немного умения пользоваться паяльником. Для измерений параметров самодельного светодиода подойдет простой мультиметр.

Подготовительная работа

Первым делом нужно найти участок на поверхности карбида кремния, способный к излучению света. Для этого исходный материал придётся раздробить на несколько кусочков размером 2-5 мм. Затем каждый из них поочередно кладут на металлическую пластинку, подключенную к плюсу источника питания напряжением около 10В. Вторым электродом выступает острый щуп или игла, присоединённая к минусу источника питания.

Затем исследуемый кусочек нужно прижать пинцетом к пластине, и острой иглой прощупать его верхнюю часть в поисках светящегося участка. Таким образом, отбирают кристалл с наибольшей яркостью. Стоит отметить, что карбид кремния может излучать свет в спектре от оранжевого до зелёного.

Изготовление светодиода

Для удобства монтажа лучше взять гвоздик длиной 10-15 мм с большой шляпкой и хорошо её залудить. Она послужит основанием и теплоотводом для кристалла. С помощью паяльника олово на шляпке доводят до жидкого состояния и пинцетом слегка утапливают подготовленный экземпляр карбида. Естественно, что излучающий участок должен быть направлен вверх. После затвердевания припоя нужно убедиться в надёжной фиксации кристалла.

Для изготовления отрицательного электрода понадобится острая часть булавки и одножильный медный провод. Как видно из фото, обе детали лудятся и надёжно спаиваются между собой. Затем на проволоке делают петлю для придания ей свойства пружины. Свободный конец провода запаивают на шляпку второго гвоздя. Оба гвоздика прикрепляют к монтажной плате на небольшом расстоянии друг от друга.

На заключительном этапе к ножкам гвоздей подводят питание соответствующей полярности. Замыкается электрическая цепь иголкой, которую фиксируют в точке кристалла с максимальным свечением.

Плавно наращивая напряжение питания, можно определить значение, при котором яркость перестаёт интенсивно нарастать. В результате проведенных измерений падение напряжения составило 9В, а прямой ток 25 мА.

При смене полярности карбид кремния перестаёт излучать свет, что частично объясняет его полупроводниковые свойства.

Не удивлюсь, если радиолюбители со стажем выскажут свой негатив в адрес получившейся необычной конструкции, напоминающей простейший светодиод. Однако иногда собирать подобные вещи самостоятельно – это интересно и даже полезно. Примером служат радиолюбительские кружки для школьников, в которых дети знакомятся со свойствами разных материалов, учатся паять и познают азы полупроводников.

Источник: https://ledjournal.info/master-class/svetodiody-svoimi-rukami.html

Светодиоды – как работает, полярность, расчет резистора

Светодиоды – одни из самых популярных электронных компонентов, использующиеся практически в любой схеме. Словосочетание “помигать светодиодами” часто используется для обозначений первой задачи при проверке жизнеспособности схемы. В этой статье мы узнаем, как работают светодиода, сделаем краткий обзор их видов, а также разберемся с такими практическими вопросами как определение полярности и расчет резистора.

Устройство светодиода

Светодиоды — полупроводниковые приборы с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Излучаемый светодиодом свет лежит в узком диапазоне спектра. Иными словами, его кристалл изначально излучает конкретный цвет (если речь идёт об СД видимого диапазона) — в отличие от лампы, излучающей более широкий спектр, где нужный цвет можно получить лишь применением внешнего светофильтра. Диапазон излучения светодиода во многом зависит от химического состава использованных полупроводников.

 

Светодиод состоит из нескольких частей: 

  • анод, по которому подается положительная полуволна на кристалл; 
  • катод, по которому подается отрицательная полуволна на кристалл; 
  • отражатель; 
  • кристалл полупроводника; 
  • рассеиватель.  

Эти элементы есть в любом светодиоде, вне зависимости от его модели.  

Светодиод является низковольтным прибором. Для индикаторных видов напряжение питания должно составлять 2-4 В при токе до 50 мА. Диоды для освещения потребляют такое же напряжение, но их ток выше – достигает 1 Ампер. В модуле суммарное напряжение диодов оказывается равным 12 или 24 В.  

Подключать светодиод нужно с соблюдением полярности, иначе он выйдет из строя.  

Цвета светодиодов

Светодиоды бывают разных цветов. Получить нужный оттенок можно несколькими способами.  

Первый – покрытие линзы люминофором. Таким способом можно получить практически любой цвет, но чаще всего эта технология используется для создания белых светодиодов.  

RGB технология. Оттенок получается за счет применения в одном кристалле трех светодиодов красного, зеленого и синего цветов. Меняется интенсивность каждого из них, и получается нужное свечение.  

Применение примесей и различных полупроводников. Подбираются материалы с нужной шириной запрещенной зоны, и из них делается кристалл светодиода.   

Принцип работы светодиодов

Любой светодиод имеет p-n-переход. Свечение возникает при рекомбинации электронов и дырок в электронно-дырочном переходе. P-n переход создается при соединении двух полупроводников разного типа электропроводности. Материал n-типа легируется электронами, p-типа – дырками.  

При подаче напряжения электроны и дырки в p-n-переходе начинают перемещаться и занимать места. Когда носители заряда подходят к электронно-дырочному переходу, электроны помещаются в материал p-типа. В результате перехода электронов с одного энергетического уровня на другой выделяются фотоны. 

Не всякий p-n переход может излучать свет. Для пропускания света нужно соблюсти два условия: 

  • ширина запрещенной зоны должна быть близка к энергии кванта света; 
  • полупроводниковый кристалл должен иметь минимум дефектов.  

Реализовать подобное в структуре с одним p-n-переходом не получится. По этой причине создаются многослойные структуры из нескольких полупроводников, которые называются гетероструктурами.  

Для создания светодиодов используются прямозонные проводники с разрешенным прямым оптическим переходом зона-зона. Наиболее распространенные материалы группы А3В5 (арсенид галлия, фосфид индия), А2В4 (теллурид кадмия, селенид цинка).  

Цвет светоизлучающего диода зависит от ширины запрещенной зоны, в которой происходит рекомбинация электронов и дырок. Чем больше ширина запрещенной зоны и выше энергия квантов, тем ближе к синему излучаемый свет. Путем изменения состава можно добиться свечения в широком оптическом диапазоне – от ультрафиолета до среднего инфракрасного излучения.  

Светодиоды инфракрасного, красного и желтого цветов изготавливаются на основе фосфида галлия, зеленый, синий и фиолетовый – на основе нитридов галлия.  

Виды светодиодов, классификация

По предназначению выделяют индикаторные и осветительные светодиоды. Первые используются для стилизации, декоративной подсветки – например, украшение зданий, рекламные баннеры, гирлянды.  Осветительные приборы используются для создания яркого освещения в помещении.  

По типу исполнения выделяют: 

  • Dip светодиоды. Они представляют собой кристаллы, заключенные в цилиндрическую линзу. Относятся к индикаторным светодиодам. Существуют монохромные и многоцветные устройства. Используются редко из-за своих недостатков: большой размер, малый угол свечения (до 120 градусов), падение яркости излучения при долгом функционировании на 70%, слабый поток света.Dip светодиоды
  • Spider led. Такие светодиоды похожи на предыдущие, но имеют 4 выхода. В таких диодах оптимизирован теплоотвод, повышается надежность компонентов. Активно используются в автомобильной технике.  
  • Smd – светодиоды для поверхностного монтажа. Могут относиться как к индикаторным, так и к осветительным светодиодам.Smd
  • Cob (Chip-On-Board) – кристалл установлен непосредственно на плате. К преимуществам такого решения относятся защита от окисления, малые габариты, эффективный отвод тепла и равномерное освещение по всей площади. Светодиоды такой марки являются самыми инновационными. Используются для освещения. На одной подложке может быть установлено более 9 светодиодов. Сверху светодиодная матрица покрывается люминофором. Активно используются в автомобильной индустрии для создания фар и поворотников, при разработке телевизоров и экранов компьютеров.  Cob
  • Волоконные – разработка 2015 года. Могут использоваться в производстве одежды. Волоконные
  • Filament также является инновационным продуктом. Отличаются высокой энергоэффективностью. Используются для создания осветительных ламп. Важное преимущество – возможность осуществления монтажа напрямую на подложку из стекла. Благодаря такому нанесению есть возможность распространения света на 360 градусов. Конструкция состоит из сапфирового стекла с диаметром до 1,5 мм и специально выращенных кристаллов, которые соединены последовательно. Число кристаллов обычно ограничивается 28 штуками. Светодиоды помещаются в колбу, которая покрыта люминофором. Иногда филаментные светодиоды могут относить к классу COB изделий.Filament
  • Oled. Органические тонкопленочные светодиоды. Используются для построения органических дисплеев. Состоят из анода, подложки из фольги или стекла, катода, полимерной прослойки, токопроводящего слоя из органических материалов. К преимуществам относятся малые габариты, равномерное освещение по всей площади, широкий угол свечения, низкая стоимость, длительный срок службы, низкое потребление электроэнергии. Oled
  • В отдельную группу выделяются светодиоды, излучающие в ультрафиолетовом и инфракрасном диапазонах. Они могут быть с выводами, так и в виде smd исполнения. Используются в пультах дистанционного управления, бактерицидных и кварцевых лампах, стерилизаторах для аквариумов.  

Светодиоды могут быть:

  • мигающими – используются для привлечения внимания;
  • многоцветными мигающими;
  • трехцветными – в одном корпусе есть несколько несвязанных между собой кристаллов, которые работают как по отдельности, так и все вместе;
  • RGB;
  • монохромными.

Светодиоды классифицируются по цветовой гамме. Для максимально точной идентификации цвета в документации прибора указывается его длина волны излучения.  

Белые светодиоды классифицируются по цветовой температуре. Они бывают теплых оттенков (2700 К), нейтральных (4200 К) и холодных (6000 К). 

По мощности выделяют светодиоды, потребляющие единицы мВт до десятков Вт. Напрямую от мощности зависит сила света.  

Полярность светодиодов

Полярность светодиодов

При неправильном включении светодиод может сломаться. Поэтому важно уметь определять полярность источника света.  Полярность – это способность пропускать электрический ток в одном направлении.  

Полярность моно определить несколькими способами: 

  • Визуально. Это самый простой способ. Для нахождения плюса и минуса у цилиндрического диода со стеклянной колбой нужно посмотреть внутрь. Площадь катода будет больше, чем площадь анода. Если посмотреть внутрь не получится, полярность определяется по контактам – длинная ножка соответствует положительному электроду. Светодиоды типа  SMD имеют метки, указывающие на полярность. Они называются скосом или ключом, который направлен на отрицательный электрод. На маленькие smd наносятся пиктограммы в виде треугольника, буквы Т или П. Угол или выступ указывают на направление тока – значит, этот вывод является минусом. Также некоторые светодиоды могут иметь метку, которая указывает на полярность. Это может быть точка, кольцевая полоска.  
  • При помощи подключения питания. Путем подачи малого напряжения можно проверить полярность светодиода. Для этого нужен источник тока (батарейка, аккумулятор), к контактом которого прикладывается светодиод, и токоограничивающий резистор, через который происходит подключение. Напряжение нужно повышать, и светодиод должен загореться при правильном включении.  
  • При помощи тестеров. Мультиметр позволяет проверить полярность тремя способами. Первый – в положении проверка сопротивления. Когда красный щуп касается анода, а черный катода, на дисплее должно загореться число , отличное от 1. В ином случае на экране будет светиться цифра 1. Второй способ – в положении прозвонка. Когда красный щуп коснется анода, светодиод загорится. В ином случае он не отреагирует. Третий способ – путем установки светодиода в гнездо для транзистора. Если в отверстие С (коллектор) будет помещен катод – светодиод загорится.  
  • По технической документации. Каждый светодиод имеет свою маркировку, по которой можно найти информацию о компоненте. Там же будет указана полярность электродов.  

Выбор способа определения полярности зависит от ситуации и наличия у пользователя нужного инструмента.  

Расчет сопротивления для светодиода

Диод имеет малое внутреннее сопротивление. При подключении его напрямую к блоку питания, элемент перегорит. Чтобы этого не случилось, светодиод подключается к цепи через токоограничивающий резистор. Расчет производится по закону Ома: R=(U-Uled)/I, где R – сопротивление токоограничивающего резистора, U – питание источника; Uled – паспортное значение напряжения для светодиода, I – сила тока. По полученному значению и подбирается мощность резистора.  

Важно правильно рассчитать напряжение. Оно зависит от схемы подключения элементов.  

Можно не производить расчет сопротивления, если использовать в цепи мощный переменный или подстроечный резистор. Токоограничивающие резисторы существуют разного класса точности. Есть изделия на 10%, 5% и 1 % – это значит, что погрешность варьируется в указанном диапазоне.  

Выбирая токоограничивающий резистор, нужно обратить внимание и на его мощность. почти всегда, если при малом рассеивании тепла устройство будет перегреваться и выйдет из строя. Это приведет к разрыву электрической цепи.  

Когда нужно использовать токоограничивающий резистор: 

  • когда вопрос эффективности схемы не является основным – например, индикация; 
  • лабораторные исследования. 

В остальных случаях лучше подключать светодиоды через стабилизатор – драйвер, что особенно это актуально в светодиодных лампах. 

Онлайн – сервисы и калькуляторы для расчета резистора:

Источник: https://ArduinoMaster.ru/datchiki-arduino/printsip-raboty-i-vidy-svetodiodov/

8 способов сделать так, чтобы LED-индикаторы бытовой техники не бесили

Индикаторы работы есть во многих бытовых приборах. И если днём они не мешают, то вечером превращаются в орудия пыток, которые пытаются ослепить своим ярким свечением.

Излучение зелёных и красных светодиодов обычно довольно мягкое, а вот голубые сильно бьют по глазам и освещают комнату не хуже ночника. К счастью, существует достаточно способов сделать их менее яркими или даже полностью нейтрализовать.

1. Уберите устройства из поля зрения

Самый простой способ — развернуть устройство к стене. Или убрать куда-нибудь подальше, где оно не будет попадаться на глаза. Можно просто поставить перед ним другой предмет, который как щит закроет от ненавистного свечения.

2. Отключите индикаторы в настройках

Функция есть не везде, но на сложной современной технике она, как правило, доступна. Например, так можно отключить светодиоды на передней панели роутера или ТВ-приставки.

3. Залепите светодиоды

Да, это первое, что приходит на ум. Способ не сложнее предыдущих, при этом более гибкий. Если правильно подобрать материал для заклеивания глазков индикаторов, можно приглушить или полностью скрыть их свечение.

Вариантов масса. Выбирать стоит исходя из желаемого результата и цвета корпуса техники:

  • Чёрная изолента полностью блокирует огни, синяя и белая приглушают, оставляя индикатор функциональным.
  • Малярная лента обеспечивает самый слабый эффект. При необходимости его легко усилить, добавив дополнительные слои.
  • Скотч можно закрасить маркером и достичь необходимой степени затемнения, а то и полностью скрыть индикатор.
  • Тонировочная плёнка для авто отлично приглушает свет, в то же время оставляя его различимым.

4. Используйте специальные стикеры

Более продвинутая вариация предыдущего метода для ленивых. Купите готовые стикеры различной формы и размера с эффектом затемнения вплоть до полного. Они не оставляют липких следов после отклеивания.

5. Закрасьте индикаторы лаком

Обычный лак для ногтей позволяет бороться с ослепляющими светодиодами не хуже всевозможных наклеек. Подберите цвет, наложите необходимое количество слоёв, и получите аккуратный тюнинг индикаторов с желаемым эффектом затемнения.

6. Зашлифуйте поверхность индикатора

Можно приглушить свечение индикаторов, сделав их поверхность матовой. Возьмите мелкую наждачную бумагу и аккуратно зашкурьте светодиод или его стёклышко. После этого свет станет рассеянным, а не направленным и не будет слепить.

7. Физически отключите светодиоды

Если гарантия на электронику давно закончилась, а вы умеете держать в руках отвёртку и не боитесь сломать устройство, можно полностью отключить индикаторы, разорвав цепи питания. Для этого достаточно перекусить одну из ножек светодиода или перерезать дорожку на плате.

8. Добавьте в цепь индикатора сопротивление

Вариант для тех, кто дружит с паяльником. Суть метода в том, чтобы снизить напряжение питания индикатора, тем самым уменьшив его яркость. Необходимо подобрать резистор с нужным номиналом и впаять его перед светодиодом.

Как сделать светодиодные мощные дневные ходовые огни (LED-ДХО)

как сделать светодиод ярче
 18 июль 2016  Лада.Онлайн    53 155     

В настоящее время вариантов реализации дневных ходовых огней из светодиодов огромное множество, но добиться яркого свечения и равномерного рассеивания света от диодов получается только при помощи нескольких способов. Расскажем простой метод изготовления сверхярких ДХО, используя легкодоступные материалы.

Потребуется

  1. Светодиоды. Лучше всего использовать текстолит, на который напаиваются светодиоды (например, SMD 3528). Более простой вариант — светодиодная лента с большим количеством светодиодов (не менее 120 светодиодов на 1 метр). См. каталог AliExpress.
  2. Светорассеиватель, который хорошо рассеивает свет (толщиной не менее 2 мм).

    Отлично подойдет органическое стекло (оргстекло или PLEXIGLAS) белого цвета, под названием «молочный акрил». Купить его можно в рекламных агентствах, занимающихся наружной рекламой.

  3. Светоотражающая окантовка (толщиной 10 мм).

    Подойдет кусок хромированного алюминия (например, от канистры с моторным маслом ZIC) или алюминий на самоклеящейся основе (типа скотча).

Как сделать светодиодные яркие ходовые огни

  1. Вырезаем светорассеиватель подходящей формы (это могут быть кольца или полукольца по типу ангельских глазок, загнутые или прямые линии), используя пилку по металлу или дремель.
  2. Обклеить внутренние и внешние стороны светорассеивателя светоотражателем. Если выбрали куски алюминия, то приклеиваем его клеем (например, эпоксидным).
  3. Вставляем в получившееся углубление светодиодную ленту или плату из текстолита со светодиодами.

Как установить LED-ДХО

Разбираем блок-фару (на примере XRAY, Priora или Granta/Kalina 2) и приклеиваем самодельные LED-ДХО к маске (внутренней подложке фары) при помощи клея (например, эпоксидного). Провода аккуратно укладываем и фиксируем, чтобы во время вибрации они не выскочили из своих посадочных мест.

Как подключить дневные ходовые огни

Если нужно, чтобы светодиодные ходовые огни включались вместо габаритов, то подключать их следует вместо габаритных огней. Если хотите правильно подключить ходовые огни, чтобы они удовлетворяли требования ГОСТ, тогда воспользуйтесь этой схемой. Не забывайте про стабилизатор напряжения для ходовых огней.

Стоит отметить, что такой тюнинг фар подойдет не только для всех автомобилей Лада (XRAY, Веста, Ларгус, Гранта, Калина, Приора или Нива 4х4), но может использоваться и на иномарках.

Получившиеся светодиодные ДХО, будут иметь равномерное и яркое свечение, которое не сравнить с ангельскими глазками, сделанных из трубок (оргстекло).

Напомним, более простой способ тюнинга фар — установить гибкие ДХО.

Источник: https://xn--80aal0a.xn--80asehdb/do-my-self/tuning/tuning-lada-vesta/1426-kak-sdelat-svetodiodnye-moschnye-dnevnye-hodovye-ogni-led-dho.html

Характеристики светодиодов для фонариков. Ремонт и увеличение мощности

как сделать светодиод ярче

Рассмотрим светодиодную продукцию, начиная от старых 5-мм, до сверхъярких мощных светодиодов мощность которых доходит до 10 Вт.

Чтобы выбрать «правильный» фонарик для своих нужд, нужно разобраться в том какие бывают светодиоды для фонариков и их характеристики.

Какие диоды используются в фонариках?

Мощные светодиодные фонари начались с устройств с матрицей 5-мм.

LED фонари в совершенно разных исполнениях, от карманных до кемпинговых, получили широчайшее распространение в середине 2000-х. Их цена заметно снизилась, а яркость и долгий срок службы от одного заряда батареек сыграли свою роль.

5-ти миллиметровые белые сверхъяркие светодиоды потребляют от 20 до 50 мА тока, при падении напряжения 3.2-3.4 вольта. Сила света – 800 мкд.

Очень хорошо показывают себя в миниатюрных фонариках-брелках. Маленький размер позволяет носить такой фонарик с собой. Питаются они либо от «мини-пальчиковых» батареек, либо от нескольких круглых «таблеток». Часто используются в зажигалках с фонариком.

Вот какие светодиоды в китайских фонариках устанавливаются уже много лет, но их век постепенно истекает.

В поисковых фонарях при большом размере отражателя есть возможность смонтировать десятки таких диодов, но такие решения постепенно отходят на второй план, а выбор покупателей падает в пользу на фонарей на мощных светодиодах типа Cree.

Поисковый фонарь на 5мм светодиодах

Такие фонари работают от батареек типа АА, ААА или аккумуляторов. Стоят недорого и проигрывают как в яркости, так и в качестве современным фонарям на более мощных кристаллах, но об этом ниже.

В дальнейшем развитии фонарей производители перебрали множество вариантов, но рынок качественной продукции занимают фонари с мощными матрицами или дискретными светодиодами.

Какие светодиоды используют в мощных фонариках?

Под мощными фонарями подразумеваются современные фонари различных типов начиная от тех, что размером с палец, заканчивая огромными поисковыми фонарями.

В такой продукции в 2017 году актуальна марка Cree. Это название американской компании. Её продукция считается одной из наиболее передовых в области светодиодной техники. Альтернативой являются LED от производителя Luminus.

Такие вещи значительно превосходят светодиоды с китайских фонариков.

Какие светодиоды Cree в фонариках устанавливаются наиболее часто?

Модели носят название состоящие из трёх четырёх символов, разделённых дефисом. Так диоды Cree XR-E, XR-G, XM-L, XP-E. Модели XP-E2, G2 чаще всего используются для небольших фонариков, а XM-L и L2 – очень универсальные.

Их используют, начиная от т.н. EDC фонарей (для повседневного ношения) – это маленькие фонари размером меньше ладони, до серьёзных поисковых фонарей большого размера.

Давайте рассмотрим характеристики мощных светодиодов для фонариков.

характеристика светодиодов для фонарей – это световой поток. От неё зависит яркость вашего фонаря и количество света, которое может дать источник. Разные светодиоды, потребляя одинаковое количество энергии, могут существенно отличаться по яркости.

Рассмотрим характеристики светодиодов в больших фонариках, прожекторного типа:

Продавцы часто указывают не полное название диода, его типа и характеристики, а сокращенную, несколько иную цифробуквенную маркировку:

  • Для XM-L: T5; T6; U2;
  • XP-G: R4; R5; S2;
  • XP-E: Q5; R2; R;
  • для XR-E: P4; Q3; Q5; R.

Фонарь может так и называться, «Фонарь EDC T6», информации в такой краткости более чем достаточно.

Ремонт фонариков

К сожалению цена таких фонариков довольно большая, как и самих диодов. И не всегда есть возможность приобрести новый фонарь, в случае поломки. Давайте разберемся как поменять светодиод в фонарике.

Для ремонта фонарика необходим минимальный набор инструментов:

  • Паяльник;
  • флюс;
  • припой;
  • отвёртка;
  • мультиметр.

Чтобы добраться до источника света нужно отвинтить головную часть фонаря, она обычно закреплена на резьбовом соединении.

В режиме проверки диодов или измерения сопротивления проверьте исправность светодиода. Для этого прикоснитесь щупами черным и красным к выводам светодиода, сначала в одном положении, а затем поменяйте местами красный и черный.

Если диод исправен – то в одном из положений будет низкое сопротивление, а в другом – высокое. Таким образом вы определяете, что диод исправен и проводит ток только в одном направлении. Во время проверки диод может излучать слабый свет.

В противном случае в обеих положениях будет короткое замыкание или высокое сопротивление (обрыв). Тогда нужна замена диода в фонаре.

Теперь нужно выпаять светодиод из фонаря и, соблюдая полярность, впаять новый. Будьте внимательны при выборе светодиода, учтите его потребление тока и напряжение, на которое тот рассчитан.

Если вы будете пренебрегать этими параметрами – в лучшем случае фонарик будет быстро садиться, в худшем – драйвер выйдет из строя.

Драйвер – это устройства для питания светодиода стабилизированным током от разных источников. Промышленно изготавливаются драйвера для питания от сети 220 вольт, от автомобильной электросети – 12-14.7 вольт, от Li-ion аккумуляторов, например, типоразмера 18650. Драйвером оборудовано большинство мощных фонарей.

Увеличиваем мощность фонаря

Если вас не устраивает яркость вашего фонаря или вы разобрались как заменить светодиод в фонарике и захотели его модернизировать, прежде чем покупать сверхмощные модели изучите основные принципы работы LED и ограничения в их эксплуатации.

Диодные матрицы не любят перегрева – это главный постулат! А замена светодиода в фонарике на более мощный может привести к такой ситуации. Обратите внимание на модели, в которые устанавливаются более мощные диоды и сравните со своей, если они подобны по размерам и конструктиву – меняйте.

Если ваш фонарь меньше — потребуется дополнительное охлаждение. Подробнее о изготовлении радиаторов своими руками мы писали здесь.

Если вы попытаетесь установить в миниатюрный фонарик-брелок такой гигант, как Сree MK-R, он у вас быстро выйдет из строя от перегрева и это будут зря потраченные средства. Незначительное повышение мощности (на пару ватт) допустимо без модернизации самого фонарика.

В остальном процесс замены марки светодиода в фонарике на более мощную – описан выше.

Фонари Police

Они зарекомендовали себя на протяжении многих лет и с каждой новой моделью этих фонарей спрос не утихает. Новинкой на отечественном рынке стала модель с электрошокером.

LED фонарик Police с шокером

Такие фонари ярко светят и могут выступать в роли средства самообороны. Однако и в них случаются проблемы со светодиодами.

Как заменить светодиод в фонарике Police

Широкий модельный ряд очень трудно охватить в рамках одной статьи, но можно дать общие рекомендации по ремонту.

  1. При ремонте фонаря с электрошокером будьте аккуратны, желательно используйте резиновые перчатки, чтобы избежать удара током.
  2. Фонари с пылевлагозащитой собраны на большом количестве винтов. Они отличаются по длине, поэтому делайте пометки откуда вы выкрутили тот или иной винт.
  3. Оптическая система фонарика Police позволяет регулировать диаметр светового пятна. При разборке на корпусе сделайте отметки в каком положении стояли детали перед снятием, иначе будет трудно поставить блок с линзой обратно.

Замена светодиода, блока преобразователя напряжения, драйвера, аккумулятора возможна с применением стандартного набора для пайки.

Какие светодиоды стоят в китайских фонариках?

Многие товары сейчас покупаются на aliexpress, где можно найти как оригинальную продукцию, так и китайские копии, которые не соответствуют заявленному описанию. Цена за такие приборы бывает сопоставимой с ценой на оригинал.

В фонарике, где заявлен светодиод Cree, его может на самом деле не быть, в лучшем случае будет стоять диод откровенно другого типа, в худшем такой, который внешне будет трудно отличим от оригинала.

Что это может за собой повлечь? Дешевые светодиоды выполняются в низкотехнологичных условиях и не выдают заявленной мощности. Имеют низкий КПД, от того у них усиленный нагрев корпуса и кристалла. Как уже было сказано, что перегрев – самый злой враг для Led приборов.

Так происходит потому, что при нагревании через полупроводник увеличивается ток, вследствие чего нагрев становится еще сильнее, мощности выделяется еще более, лавинообразно это приводит к пробою или обрыву светодиода.

Если постараться и потратить время на поиск информации, можно определить оригинальность продукции.

Сравните оригинал и подделку cree

LatticeBright – это китайский производитель светодиодов, который делает продукцию очень похожей на Cree, наверное это совпадение дизайнерской мысли (сарказм).

Сравнение китайской копии и оригинала Cree

На подложках эти клоны выглядят следующим образом. Можно заметить разнообразие форм подложек для светодиодов, производимое в китае.

Определение подделки по подложке для LED

Подделки изготавливаются довольно умело, многие продавцы не указывают об этом «бренде» в описании товара и о том, где произведены светодиоды для фонарей. Качество таких диодов не самое худшее среди китайского барахла, но и далеко от оригинала.

Установка светодиода вместо лампы накаливания

У многих в старых вещах пылятся коногонки или фонари на лампе накаливания и вы можете легко сделать его светодиодным. Для этого есть либо готовые решения, либо самодельные.

С помощью разбитой лампочки и светодиодов, если добавить немного смекалки и припоя, можно сделать отличную замену.

Железный бочонок в данном случае нужен для улучшения отвода тепла от LED. Далее нужно припаять все детали друг к другу и закрепить клеем.

При сборке будьте аккуратны – избегайте замыкания выводов, в этом поможет термоклей или термоусадочная трубка. Центральный контакт лампы нужно распаять – образуется отверстие. Продеть через него вывод резистора.

Дальше нужно припаять свободный вывод светодиода к цоколю, а резистора к центральному контакту. Для напряжения 12 вольт нужен резистор 500 Ом, а для напряжения в 5 В – 50-100 Ом, для питания от Li-ion 3.7В аккумулятора – 10-25Ом.

Как сделать из лампы накаливания светодиодную

Подобрать светодиод для фонарика гораздо сложнее чем его заменить. Нужно учитывать массу параметров: от яркости и угла рассеивания, до нагрева корпуса.

Кроме того, нельзя забывать об источнике питания для диодов. Если вы освоите все описанное выше – ваши приборы будут светить долго и качественно!

Оцените, пожалуйста, статью. Мы старались:) (18 4,78 из 5)

Источник: https://SvetodiodInfo.ru/texnicheskie-momenty/xarakteristiki-svetodiodov-dlya-fonarikov.html

Сверхяркие светодиоды: особенности монтажа, питания, конструкции

как сделать светодиод ярче

Осветительными приборами, где в качестве источников света используются сверхяркие светодиоды, уже никого не удивишь. Спрос на такие устройства неизменно растет, это напрямую связано с низким энергопотреблением этих приборов. Учитывая, что на освещение тратится около 25-35% потребляемой электроэнергии, экономия будет весьма ощутимой.

Различные виды сверхярких светодиодных источников освещения

Но учитывая относительно высокую стоимость сверхярких светодиодов, в силу их конструктивных особенностей, говорить о полном переходе на этот тип освещения еще не своевременно. По мнению специалистов, этот процесс займет от 5 до 10 лет, именно столько понадобится на отладку и внедрение новых технологий.

Кратко об эффективности

Эффективностью осветительного прибора принято считать соотношение вырабатываемого светового потока (измеряется в люменах) к потребляемой электроэнергии (ватт). Качественная лампа с нитью накала имеет эффективность около 16 люменов на ватт, флуоресцентная (энергосберегающая) — в четыре раза больше (64 лм/Вт), для длинных дневных ламп этот показатель в районе 80 лм/Вт.

КПД сверхярких светодиодов, выпускающихся массово на текущий момент, примерно такой же, как у ламп дневного света. Обратите внимание, что мы говорим именно про массовую продукцию. Что касается теоретического предела для сверхярких светодиодных источников, то он определен порогом в 320 лм/Вт.

Как обещают многие производители, в ближайшие несколько лет КПД можно будет повысить до уровня 213 лм/Вт.

Влияние особенностей конструкции на стоимость

Для изготовления сверхярких светодиодных источников света может применяться один из двух способов:

  • чтобы получить свет, близкий по спектру к белому, используются три кристалла установленных в одном корпусе. Один красный, второй синий и третий зеленый;
  • применяется кристалл, излучающий в голубом или ультрафиолетовом спектре, он подсвечивает линзу покрытую люминофором, в результате излучение преобразуется в свет, близкий по спектру к природному.

Не смотря на то, что первый вариант более эффективен, его реализация обходится несколько дороже, что отрицательно отражается на распространенности. Помимо этого спектр света, излучаемый таким источником, отличается от природного.

У приборов, изготовленных по второй технологии, меньше эффективность. Стоит также учитывать, что люминофор содержит в себе сложный по составу композит на основе церия и иттрия, которые сами по себе стоят недешево. Собственно, этим и объясняется относительно высокая стоимость сверхярких светодиодов белого света. Конструкция такого устройства показана на рисунке.

Устройство сверхяркого светодиода

Обозначения:

  • А – печатный проводник;
  • В – основание с повышенной теплопроводимостью;
  • C – защитный корпус устройства;
  • D – паста-припой;
  • E – кристалл светодиода, излучающий ультрафиолетовый или голубой свет;
  • F –люминофорное покрытие;
  • G – клей (может быть заменен эвтектическим сплавом);
  • H – провод, соединяющий кристалл и вывод;
  • K – отражатель;
  • J – теплоотводящее основание;
  • L – вывод питания;
  • M – диэлектрическая прослойка.

Особенности монтажа

На работу сверхярких светодиодов оказывает влияние степень нагрева кристалла и самого p-n перехода. От первого напрямую зависит срок эксплуатации устройства, от второго – уровень светового потока. Поэтому для длительной службы сверхярких светодиодов необходимо организовать надежный теплоотвод, делается это при помощи радиатора.

Следует принять во внимание, что теплопроводящие основания этих полупроводников, как правило, проводят электричество. Поэтому когда устанавливается несколько элементов на один радиатор,  следует позаботиться о надежной электроизоляции оснований.

Хороший теплоотвод значительно увеличивает срок службы сверхярких светодиодов

Остальные правила монтажа практически такие же, как у обычных диодов, то есть необходимо соблюдение полярности, как при установке самой детали, так и подключении питания.

Особенности питания

Учитывая относительно высокую стоимость сверхярких светодиодов, очень важно использовать для их работы надежные и качественные источники питания, поскольку эти полупроводниковые элементы критичны к токовой перегрузке.

После нештатного режима прибор может остаться работоспособным, но мощность излучаемого светового потока существенно сократится. Помимо этого такой элемент с большой вероятностью станет причиной поломки и других, совместно подключенных светодиодов.

Прежде, чем говорить о драйверах для сверхярких светодиодов, коротко расскажем об особенностях их питания. В первую очередь необходимо принять во внимание следующие факторы:

  • мощность светового потока, излучаемая этими элементами, напрямую зависит от величины протекающего через них электротока;
  • для сверхярких светодиодов характерна нелинейная ВАХ (вольт-амперная характеристика);
  • температура оказывает сильное влияние на ВАХ этих полупроводниковых приборов.

Ниже показано изменение ВАХ при температуре полупроводникового элемента (сверхяркий smd-светодиод) 20 °С и 70 °С.

Изменение характеристик от влияния температуры

Как видно из графика, при подаче на полупроводник стабильного напряжения величиной 2 В, электроток, проходящий через него, меняется в зависимости от температуры. При нагреве кристалла 20°С он будет равен 14 мА, когда температура повысится до 70°С, этот параметр будет соответствовать 35 мА.

Результатом такой разницы будет изменение мощности светового потока при одном и том же питающем напряжении. Исходя из этого, необходимо стабилизировать не напряжение, а электроток, проходящий через полупроводник.

Такие блоки питания называются светодиодными драйверами, они представляют собой обычные стабилизаторы тока. Это устройство можно приобрести готовое или собрать самостоятельно, в следующем разделе мы приведем несколько типичных схем драйверов.

Самодельный светодиодный драйвер

Предоставим вашему вниманию несколько вариантов драйверов на основе специализированных микросхем компании Monolithic Power System, использование которых существенно упрощает конструкцию. Схемы приводятся в качестве примера, полное описание типового включения можно найти в даташит на микросхемы.

Вариант первый на базе понижающего преобразователя МР4688.

Пример включения МР4688

Данный драйвер может работать с напряжениями от 4,5 до 80 В, порог максимального выходного электротока 2 А, что позволяет запитать светильник на сверхярких светодиодах большой мощности. Уровень электротока, проходящего через светодиоды, регулируется сопротивлением R . Реализация ШИМ-диммирования с частотой 20 кГц позволяет плавно изменять протекающий через светодиод электроток.

Второй вариант драйвера на базе микросхемы МР2489. Ее компактный корпус (QFN8 или TSOT23-5) делает возможным размещение драйвера в цоколе MR16, используемый галогенными лампами, что позволяет заменить последние светодиодными. Типовая схема подключения МР2489 показана на рисунке.

Драйвер на базе МР2489

Приведенная выше схема позволяет включать два параллельных светодиода, у каждого из которых рабочий ток 350 мА.

Последний вариант драйвера на базе микросхемы МР3412, который может быть использован в переносных фонариках. Отличительная особенность такой схемы – возможность работы от пальчикового элемента питания АА.

Драйвер для фонарика на базе МР3412

Источник: https://www.asutpp.ru/sverxyarkie-svetodiody.html

Хотите вечных светодиодов? Расчехляйте паяльники и напильники. Или домашнее освещение самодельщика

Когда-то давным давно, когда я еще учился в школе, а на дворе был конец перестройки, мой дядя (заронивший в меня интерес к электронике) припер домой сумку вынесенного через проходную завода добра. Собственно, такие сумки он приносил домой вполне регулярно, пополняя запасы, хранившиеся в диване. Диван этот, как вы догадываетесь, манил, и иногда в отсутствии дяди я в него заглядывал с восторгом.

Но кое-что из этой сумки в диван не попало, а попало в мои руки. Дядя мне вручил пачку — штук десять — макетных плат, и новенькую нераспечатанную коробку дефицитных, да и не дешевых в то время светодиодов. Причем светодиоды были не простые: вместо привычной маркировки АЛ-что-то там на коробке стоял код из четырех цифр, как я понял — они были экспериментальные. И они были яркие. По сравнению с привычными АЛ307 или АЛ310 — просто ослепительные.

И их к тому же было много — штук 50.

Идея «куда это богатство применить» возникла моментально: светодиоды были распаяны на одной из макетниц — сколько влезло (влезли не все), и из них вышел великолепный красный фонарь для печати фотографий, который абсолютно не засвечивал фотобумагу даже в упор. Правда, тут же я узнал о том, что «светодиоды не греются» — это вранье, так что ток пришлось снизить вдвое, с 10 мА на светодиод до 5. А еще через полгода успешной эксплуатации узнал и о том, что «светодиоды не перегорают» — это тоже неправда: первый светодиод в сборке погас, оказался пробит. А со временем и весь фонарь пришел в негодность. И вот сейчас я снова слышу из каждого утюга про «вечные» светодиодные лампочки, а дома за неполный год перехода на светодиодные лампы перегорела уже третья по счету.

Почему светодиодные лампочки не вечны?

Да потому что ничего нет вечного. Светодиод, к тому же — штука тонкая. Буквально. В его структуре имеются слои толщиной в считанные нанометры, образующие квантовые ямы.

Диффузия и электромиграция к таким слоям безжалостны — они размывают их, создают дефекты, постепенно снижая световыход и увеличивая вероятность катастрофы в масштабах крохотного кристалла, в котором, к слову, выделяется световая и тепловая энергия, удельное значение которой в расчете на кубический сантиметр p-n перехода можно сравнить разве что с ядерным взрывом (немного утрировано, но сами прикиньте плотность энерговыделения). Чем светодиод горячее, тем все эти негативные процессы будут идти быстрее. А он, как мы уже в курсе, греется. Греется даже тогда, когда через него идет ток в 10 миллиампер. А тем более — когда это мощный прибор, ток через который как минимум 100 мА, а бывает — и ампер, и даже три ампера. И в тепло, не смотря на всю энергетическую эффективность светодиодов, переходит значительная доля от подведенной к светодиоду электроэнергии. От двух третей до трех четвертей. А куда охлаждаться светодиодам в светодиодной лампочке? А некуда, по большому счету. Светодиод сам по себе спроектирован, чтобы его можно было охлаждать. Кристалл припаян к массивному основанию из меди или высокотеплопроводной керамики, у этого основания есть специальная площадка для пайки к внешнему теплоотводу, в роли которой — плата с алюминиевой или медной подложкой. А подложка эта, по идее, должна быть через термопасту прикручена к хорошему радиатору с большой площадью. А прикручена она в лучшем случае к металлическому корпусу светодиодной лампы, площадь которого совершенно недостаточна для рассеивания более чем нескольких ватт тепла, да еще и в закрытом плафоне. В худшем — корпус вообще пластмассовый, и в этот корпус еще попадает тепло от драйвера и от не вышедшего наружу и потерявшегося в недрах лампочки света. Вот и жарятся светодиоды при температуре, превышающей 100, а то и 130°С. И, кстати, не только светодиоды, но и драйвер, который тоже нередко выходит из строя.

Что делать-то?

Одно из трех. Либо мы, оставив на месте старую люстру, ставим в нее лампочки меньшей мощности. Они меньше будут греться и у них больше шансов прожить долго.

Разумеется, в комнате станет темно: мы вернемся во времена, когда в люстре из экономии и пожаробезопасности стояли лампочки по 25 ватт, от которых ушли, поставив на их место пятнадцативаттные энергосберегайки, сделавшие из темной берлоги светлое помещение, в котором приятно находиться. Либо мы покупаем новую люстру, в которую можно вкрутить больше лампочек.

Так мы останемся со светлой комнатой и получим (возможно) более долгую жизнь лампочек. Только на люстру, как и на лампочки, придется потратиться. И, наконец, третий вариант: мы забываем само понятие «светодиодная лампа», как страшный сон и ставим на место люстры специально спроектированный светодиодный светильник.

Продуманный и в плане хорошего использования светового потока (у светодиодных ламп типа «висит груша — нельзя скушать» с этим в приборах, рассчитанных на лампы накаливания, не всегда хорошо — они плоховато светят вбок и назад), и в плане качественного охлаждения.

Рынок

На рынке есть такие светильники. Но по большей части они во-первых, дорогие, а во вторых — страшные. Этакие промышленные штуковины, которые уместны в гараже, цеху, в торговом зале гипермаркета, в офисе, наконец — но не в квартире. Нет, есть и красивые, и дизайнерские очень эффектно выглядящие светильники. Но — во-первых, опять же, цена, а во-вторых, в жертву дизайну принесено охлаждение.

Так, классическая китайская светодиодная люстра-блин — это пятьдесят ватт светодиодов, сидящих на алюминиевой плате в виде кольца диаметром 45 см и шириной сантиметров 8. И — все. Никакого тебе корпуса с оребрением, ничего. И опять-таки, плата в почти наглухо закрытом корпусе. Ну хоть драйвер чуть наружу вынесен. Вердикт: жить будет, как светодиодная лампочка.

Только когда сдохнет, менять придется не лампочку за 150 рублей, а люстру за пять-десять тысяч. В общем, выход, кажется, один: умелые руки.

Самодельный светильник: проектирование

Сразу скажу: светильник будет не на светодиодной ленте и без блютуса. Для начала, оценим, сколько нам нужно света. Тут дело вкуса, но я люблю, когда в жилище светло. Всякий интимный полумрак я люблю в особых случаях, в романтичной обстановке, но в обычной жизни он навевает тоску. Считать можно по-всякому, но я воспользуюсь тем фактом, что с люстрой с пятью энергосберегайками по 15 ватт, дававшими каждая по 950 лм, в комнате было хорошо. То есть 5 килолюмен нам будет достаточно.

Теперь идем на сайт Cree, находим там Datasheet на модули CXA2530. Почему именно на них? Да потому что у меня есть несколько штук таких модулей, и с ними удобно работать: к ним просто припаиваются провода, а сами модули сажаются прямо на радиатор с помощью прилагающегося фланца. А еще их несложно купить — известный китайский интернет-магазин в помощь. У имеющихся у меня модулей бин светового потока Т4, это соответствует номинальному световому потоку 3440-3680 лм.

Сразу 20% от этой цифры отнимаем — они потеряются на рассеивателе. Получаем световой поток 2750-2950 лм, а учитывая, что получается этот поток при мощности около 30 Вт, получаем потребную для освещения мощность (подведенную к светодиодам) около 50 Вт. Поскольку комната у нас длинная, мы уберем люстру из центра и сделаем два одинаковых светильника по 25 ватт.

Приняв КПД светодиодов за 25% (достаточно консервативная оценка — скорее всего, лучше, но уж точно не хуже), выясняем, что в каждом светильнике выделяется 18,75 Вт тепла. И наша задача — выбрать под это тепловыделение радиатор. Вот как мы это сделаем.

Будем исходить из максимальной температуры кристалла = 85°C и температуры окружающей среды = 35°C. То есть = 50°C.

Перепад температуры пропорционален рассеиваемой мощности, а коэффициент пропорциональности называется тепловым сопротивлением: , и измеряется оно в кельвинах (или градусах цельсия) на ватт. В нашем случае тепловое сопротивление кристалл-окружающая среда должно быть равно 2 °С/Вт.

Из чего же состоит тепловое сопротивление? Первый его компонент — это тепловое сопротивление, присущее самому корпусу светодиода. Фирма Cree не дает эту величину в даташите напрямую, предлагая воспользоваться странным графиком, но в ранних публикациях в журналах о выпуске новых светодиодных матриц указывалось значение 0,8 °С/Вт.

Второй компонент общей величины теплового сопротивления — это сопротивление, создаваемое слоем термопасты между корпусом и радиатором. В качестве термопасты мы возьмем старый-добрый Алсил-3, с теплопроводностью = 1,7-2 Вт/м*К. При слое пасты толщиной 50 мкм и площади теплорассеивающей поверхности 2,8 (площадь круга диаметром 19 мм под излучающей поверхностью матрицы) получаем = 0,105 °С/Вт.

Итак, на радиатор у нас остается 1,1 °С/Вт. Исходя из этой цифры, выбираем радиатор, накинув процентов 30 «на вранье», на растекание тепла от маленькой матрицы и на то, что радиатор будет неоптимально ориентирован в пространстве.

Например, нам подойдет профиль АВМ-076 размером сечения 176х40 мм с тепловым сопротивлением куска длиной 100 мм 0,5 °С/Вт. Нам хватит куска этого профиля длиной 80-100 мм. 100 мм — это стандартные куски, имеющиеся в продаже, 80 нужно заказывать у производителя (Виртуальная механика, virtumech.

ru), такой вариант выглядит несколько более эстетичным за счет меньшей ширины.

Осталось выбрать драйвер. Критерии для его выбора — это ток и рабочие пределы выходного напряжения. Мощность 25 Вт получается при токе около 0,7 А, напряжение на матрице при этом составит около 35-36 В.

Конструкция

Перебрав несколько вариантов конструкции светильника, я остановился на рассеивателе из матового полупрозрачного пластика, имеющем вид полуцилиндра. Форма эта получается простейшим способом — за счет крепления изогнутой пластины к боковым сторонам радиатора. Способ крепления достаточно произволен — на винтах с прижимными пластинами, на клею — я воспользовался красным двусторонним скотчем «Момент».

В качестве рассеивателя я применил рассеивающую пленку из подсветки разбитого ЖК монитора — она имеет очень хорошее светопропускание. Можно также заматировать абразивом пленку для печати на лазерном принтере или любую другую плотную пластиковую пленку. Матрица с предварительно припаянными проводами устанавливается с помощью комплектного фланца в центре радиатора с помощью двух винтов М3 (гайки использовать неудобно, так что придется поработать метчиком).

Перед приклеиванием рассеивателя свободную от матрицы плоскую поверхность радиатора рекомендуется оклеить алюминиевым скотчем или окрасить белой краской — это снизит потери света. По поводу термопасты — хотелось бы заметить, что использование темной термопасты не рекомендуется: она процентов на 10 снизит световой поток.

Я это хорошо заметил на двух экземплярах, один из которых я сделал с Алсилом-3, а на второй алсила не хватило и я воспользовался пастой из комплекта кулера фирмы Scythe, имевшей темно-серый цвет. Разница при измерении люксметром очевидна. Также нет смысла использовать более дорогие, чем алсил, термопасты с большей теплопроводностью: и на алсиле падает в худшем случае пара-тройка градусов, погоды они не сделают.

После сборки первого светильника (в котором я использовал радиатор от процессора Pentium II и который поселился в кухне, у него чуть меньшая мощность в районе 15 Вт), я принял решение ставить в светильники для комнаты не одну матрицу, а две — это «размазало» пятно света на рассеивателе и сделало свет более комфортным. Более разумно было бы в таком случае ставить менее мощные модули, скажем, CXA1820.

Модули соединил параллельно, нежелательных последствий в виде неравномерного распределения тока между ними это не вызвало — обе матрицы светятся на глаз одинаково. Но длину подводящих проводов я на всякий случай выровнял. Крепление к потолку у меня — с помощью коромысла из жесткой стальной проволоки диаметром 2 мм, концы которого продеты в отверстия в крайних ребрах радиатора и загнуты.

За центр коромысла зацеплен крючок, прикрепленный к потолку — такой длины, чтобы между натяжным потолком и радиатором оказалось расстояние в пару сантиметров. Драйвер спрятан за натяжным потолком. Если бы светильники делались до потолка, можно было бы в него запрятать и радиаторы. Поверхность радиатора можно покрасить в черный цвет перманентным маркером или тонким слоем из баллончика (толстым не надо — теплоизоляция). А можно и не красить, глаза он особо не мозолит.

Результаты

Светло. Под лампами на высоте столешницы — 450 лк, в середине комнаты 380 лк. Свет комфортный, цветопередача — вполне (правда, на кухне оказалось, что сырое мясо под этим светом выглядит, как-будто его слегка подкрасили черничным соком).

Радиаторы после многочасовой работы теплые, но не горячие. Мерцание равно нулю (заслуга качественных драйверов).

И по ценам: матрицы обошлись в 550 рублей каждая (курс с тех пор, конечно, поменялся), радиаторы — по 600 рублей, драйвера — по 250 рублей, пленка досталась бесплатно.

Итого — 2200+1200+500 = 3900 рублей. Плюс два-три часа работы.

Источник: https://habr.com/post/437420/

От чего зависит яркость свечения светодиода и как ее регулировать

Рядового потребителя при покупке осветительного прибора интересует не напряжение или ток, а яркость светодиода, так как она отличается от показателя других ламп. Внедрение новых технологий требует иного подхода к характеристикам светотехники.

  Основные параметры, в том числе яркость свечения, хорошие производители обозначают в маркировке, на упаковке, в технической документации.

Для правильного выбора необходимо знать значение букв и цифр, уметь определить, какой прибор допускает регулировку яркости, какой – нет.

Что такое яркость светодиода и в чем она измеряется

Яркостью свечения называют показатель света, равный соотношению силы светового потока к косинусу угла, под которым он излучается, и освещаемой площади.

Другое определение – освещенность в точке, перпендикулярной к источнику, к углу, в который заключен луч. Яркость свечения обозначается буквой «L», измеряется в милликанделах на метр в минус второй степени (кд*м-2).

У обычных светодиодов яркость 20-50 мкд, у сверхярких – до 20 000 мкд. От этого показателя зависит восприятие предметов глазами человека.

Если говорить о светодиодах, то у нихяркость свечения – это мощность (сила) света, измеряемая в ваттах и зависящаяот угла конуса, основание которого расположено на освещаемой площади, вершина –в источнике света. При равном излучении во всех направлениях яркость свечения будетсоотношением потока к пространственному углу (в градусах). Чаще всего градусыпереводятся в стерадианы: sr = 2 π (1 – cos θ/2), где θ – угол луча.

Параметры, влияющие на яркость

Насколько ярко будет отображаться освещаемый объект, зависит не только от светового потока. Яркость свечения зависит так же от плотности луча и чувствительности наблюдателя.

Сила тока

Во время работы сила тока на светодиодезависит от напряжения. При незначительном увеличении вольтажа электротокповышается многократно, вместе с ним и яркость свечения. Но этим параметромможно управлять, если включить в схему аналоговый или широко-импульсныймодулятор, обеспечивающий функцию диммирования. 

Зависимость яркости свечения идеального светодиода от электротока линейная. На практике зависит от потерь на выделении тепла и дифференциального сопротивления кристалла. Существует предел, после которого повышать ток нельзя из-за перегрева p-n-перехода, способного вывести LED из строя.

Технология

Светодиод – это источник света точечного типа, направленность луча определяет конструкция. Параметры меняются в зависимости от оптических свойств и наличия в приборе люминофора, рассеивателей и линз. Независимо от устройства интенсивность свечения регулируется минимальными изменениями тока.

У светодиода при высокой плотности луча(небольшом угле излучения) яркость свеяения увеличивается независимо от объемапотока.

Внимание! При покупке необходимо учитывать, что источник с тысячей милликандел и углом излучения 45 градусов будет давать такой же поток, как с углом 12 градусов, но при втором варианте луч будет ярче.

Площадь кристалла

Еще один показатель, от которогонапрямую зависит объем светового потока и яркость свечения – величинакристалла. Например, площадь СМД 3528 3,5х2,8 мм, площадь СМД 5630 – 5,6х3 мм,световой поток соответственно 6-8 и 50 люмен. Самые новые кристаллы отличаютсябольшими размерами и высокими показателями интенсивности свечения. Этообъясняется тем, что излучение в любом чипе зависит от величины р-n перехода.

Важно! При покупке необходимо знать, что неизвестные китайские производители это используют. Вместо больших кристаллов на 1 Вт они ставят маленькие на 0,75 или 0,5 Вт, при подаче заявленного тока их срок службы значительно сокращается или они перегорают.

Что можно узнать из маркировки

У именитых производителей маркировка достаточно длинная, поэтому размещается на упаковке или в технической документации. Ленты поставляются с маркировкой на катушке. Данные можно спросить у продавца, если их нельзя найти.

  Все о мощных светодиодах 3 W

Для обычных светодиодов не существует стандартных обозначений, каждый производитель использует свои. Яркость свечения всегда указывается в маркировке мощных ламп.

Источник: https://svetilnik.info/svetodiody/ot-chego-zavisit-yarkost-svecheniya-svetodioda.html

Как сделать светодиодную лампу своими руками

Благодаря своим многочисленным положительным качествам, надежности, практичности, светодиодные лампы практически с первых мгновений своего появления завоевали рынок.

Светильники со светодиодными источниками света имеют большой срок службы, не нагреваются при работе, потребляют минимальное количество энергии при высокой рассеиваемой мощности излучаемого светового потока. Особенность работы светодиодов связана с технологией изготовления p-n-перехода, выбора кристалла.

Современные технологии позволяют изготовить очень яркие светодиоды со световым потоком 4000 К, что намного больше, чем способны излучать даже экономичные люминесцентные лампы.

Выпускаются лампы с желтым или белым свечением, поэтому покупатели могут выбирать наиболее подходящие для своего помещения источники света. Желтые, имея температуру свечения 6000 К, создают теплое свечение, а белые с 4000 К – холодное.

Светодиодные лампы являются более выгодными по сравнению с лампами накаливания или «энергосберегающими», но из-за особенностей изготовления, своей конструктивной сложности они стоят дороже. Хотя, сравнивая конструкцию и технологичность люминесцентных источников света, можно сделать вывод, что производство светодиодных проще.

Светодиодный светильник 

Учитывая высокую цену на светодиодные лампы, многие хотят сделать ее своими руками, тем более для этого все необходимые детали можно приобрести на радиорынке. Чего не скажешь о ртутной лампе, в которой не только плата питания сложна, но и колба с газом является недоступным элементом. Поэтому, если хотите изготовить качественные светодиодные лампы для теплицы своими руками, то это можно сделать довольно просто.

Сфера применения

Преимущество светодиодных источников света заключается в универсальности. Производители выпускают различные по мощности излучения, форме и количеству элементов светодиодные матрицы или сами светодиоды. Поэтому можно конструировать светильники на свое усмотрение как на стандартный цоколь от разбитой лампы, так и на специализированный в соответствии с требованиями подключения к драйверу или плате управления.

Преимуществом светодиодных источников света является управляемость яркостью свечения путем изменения напряжения на его входе. Таким образом, можно получить оттенок от еле заметного до чрезмерно яркого. Это свойство дает возможность создавать много полезных вещей:

  • прожекторы;
  • уличные фонари;
  • ночные светильники;
  • индикаторы;
  • фитолампы или светодиодные лампы для растений своими руками;
  • подсветка торговых полок;
  • люстры.

Дачные строения на участке, подлежащие регистрации в 2019 году

Светодиоды получили применение во многих сферах благодаря своим практическим качествам. Они активно используются в промышленности, быту, медицине, детских дошкольных учреждениях.

Изготовление своими руками

Известно много различных форм светильников и систем подсветки, которые могут быть изготовлены своими руками в корпусе, а может быть использована готовая лента, что также весьма удобно. Например, при создании подсветки клавиатуры или полок в шкафу.

Что же потребуется для изготовления светильника на светодиодах? Долго размышлять не придется, потому что светодиодные источники света являются универсальными. Их можно подключать на переменное или постоянное напряжение любого номинала. Достаточно изготовить качественный драйвер или блок управления и грамотно расположить светодиоды на пластине.

Крепление и установка

Прежде чем приступать к изготовлению светодиодной лампы, стоит подумать над ее назначением. Если она будет устанавливаться в стандартный патрон, то для этого потребуется цоколь Е27, Е14, G9. Взять его можно с любой старой лампочки, например, от люминесцентной. Точно таким принципом руководствуются при освещении теплицы светодиодными лампами.

В зависимости от назначения светодиодные светильники также могут быть различными. Одни предназначены для общего освещения, для использования в качестве ночников или в качестве фитолампы для выращивания растений.

В первом случае для изготовления светильников используются яркие светодиоды холодного или теплого свечения, что наиболее предпочтительно.

С точки зрения влияния на зрение человека, лампы лучше покупать именно с желтым свечением, точно так же дело касается и выбора самих светодиодов.

А когда речь идет о ночнике или тусклой подсветки, то для его изготовления следует выбирать отличные от белого цвета или же использовать режимы свечения с низкой яркостью. Если же предстоит изготовить фитолампу для выращивания растений, то для этого лучше выбрать красный и синий цвета светового потока. Именно спектр этих оттенков оказывает благоприятное воздействие на рост и обеспечивает интенсивное развитие растений.

Как сделать фитолампу

Светодиодные лампы получили широкое применение, особенно часто их используют для выращивания растений в теплицах. Для этого применяется так называемая фитолампа. Ее особенность заключается в спектре света. Растения хорошо растут при красном, синем и желтом оттенках света.

Например, красный способствует лучшему фотосинтезу, синий стимулирует интенсивность роста на клеточном уровне, а желтый обогащает растение прочими немаловажными компонентами.

Поэтому светодиодные лампы своими руками станут идеальным вариантом, тем более, когда речь идет о выращивании растений.

Закваска капусты по лунным фазам: советы и рецепты

Но чтобы растение действительно интенсивно набирало рост в теплице, укреплялось и быстрее формировалось, необходимо выдерживать пропорцию количества красного света к синему в соотношении 1:3. И добавить чуточку желтого. Растение в таких условиях значительно крепче, выносливее и здоровее.

Поэтому если решите выращивать рассаду, то фитолампу можно изготовить своими руками. Для этого потребуется купить ленту или комбинировать красные и синие цвета светодиодов в светильниках для теплицы.

Такое освещение в теплице не потребует значительных материальных растрат, потому что цена материалов ниже, чем готовой фитолампы.

Благодаря возможности размещения источников освещения в любом удобном месте, можно сэкономить на электричестве. Например, ленту можно протянуть над самими растениями, исключая излишние растраты на освещение пространства всей теплицы.

Для изготовления лампы не потребуется покупать специальные светодиоды, для теплиц вполне подойдут рыночные или заказанные из интернет-магазина. В продаже имеются различные модели, важно, чтобы яркость была достаточной, а цвет соответствовал эффективному спектру.

Базовая конструкция

Когда речь идет об изготовлении своими руками светодиодного освещения для теплиц или для других определенных нужд, то тип конструкции выбирается исходя из особенностей его закрепления. Если предстоит устанавливать в стандартный навесной светильник с патроном на Е27, то, соответственно, лучше применить и стандартный цоколь.

Корпус лампочки можно изготовить из любого прозрачного материала. Но лучший эффект вы получите от непосредственного свечения без использования различных светофильтров. А ведь колбы и рассеиватели как раз таковыми и являются. Когда речь идет об изготовлении лампы для хозяйственных нужд, то красоту можно отложить на второй план.

Выбор источника питания

Светодиодные источники света являются универсальными. Их можно подключать на любое напряжение питания. Но только для осуществления этого потребуется изготовить необходимый драйвер или простейший блок питания, конструкцию устройства следует выбирать исходя из места обустройства освещения. В теплице практически всегда присутствует высокая влажность, поэтому блок питания должен быть герметичным.

На практике существует масса схем подключения светодиодов при изготовлении освещения теплицы своими руками с питанием как от сети постоянного напряжения 12В, так и к сети 220В с переменным током. Но на этом форматы питающих цепей не заканчиваются, потому что путем стандартных расчетов можно использовать любое напряжение.

Источник: https://1teplica.com/prochee/kak-sdelat-svetodiodnuyu-lampu-svoimi-rukami

Как сделать светодиод ярче

Светодиоды находят широкое применение практически во всех сферах жизни человека, особенно если он является счастливым обладателем собственного авто. С каждым днем все с большей активностью светодиоды вытесняют лампы накаливания.

Работают они достаточно просто, при пропускании тока через устройство, он излучает не когерентный свет. Отличаются от обычных ламп накаливания долговечностью, высоким КПД и низким потреблением тока. Применять их можно где угодно, зависит все от вашей фантазии.

В его корпусе расположен полупроводниковый кристалл, который светиться при прохождении через него тока.

Маломощные (0.07W)

Недолговечны, так как не имеют охлаждения. Они применяются в различных радио аппаратурах.

Мощные (1-3W)

Долговечны. При правильном использовании могут работать больше 10 лет. Практически не подвержены перегрузкам.

Светодиодные модули (0.7-0.9W)

Это алюминиевая пластина в которой находится несколько диодов. Её главное отличие — весьма недешевая стоимость

Светодиодные ленты

Маломощные светодиоды, которыми можно подсветить бардачок в машине или панель приборов, не более. Такие конфигурации, как правило, недолговечны.

Как сделать самим?

В данном видео, вам, покажут как сделать яркие светодиоды и установить их на авто.

Главное, нужно помнить, что светодиод – это не обычная лампа накаливания. При замене единицы устройства на лампу нужно быть очень внимательным, так как ваши неправильные действия с электрической частью автомобиля могут привести к весьма серьезным последствиям.

В отличие от обычных ламп накаливания, они потребляют на 80% меньше мощности, при этом имеют практически одинаковый световой поток. Благодаря этому снижается нагрузка на аккумулятор и генератор.

От правильного выбора напряжения будет зависеть яркость осветителя. Также у разных цветов, разное напряжение, например, у красного и желтого 2-2.5В, а у зеленых синих 3-3.8В. Для правильной работы диодов нужно проверять их работу на заглушенном двигателе и заведенном.

Если вы собираетесь заменить обычную лампочку на светодиод на приборной панели, то нужно использовать узконаправленные диоды, на конце они имеют увеличительную линзу. Также нужно обратить внимание на тип линз.

При правильной установке, он может проработать до 2500 часов при непрерывном использовании. Подключение их не трудоемкое занятие, так как на них отсутствует нить накаливания, поэтому это не займет много времени. И вам не нужно обладать знаниями работы в радиотехнике.

Еще один плюс светодиода в том, что вы можете устанавливать его в любом положении, в любом цвете и размере. Если вы просто включите диод в сеть автомобиля, то он просто перегорит.

Они подключаются к аккумулятору через девятивольтовый стабилизатор, который обеспечит последовательно-параллельное подключение. Ни в коем случае нельзя подключать напрямую, так как напряжение в сети автомобиля 12В, а у них в среднем 3-3.5В.

Подключение светодиодов

Из данного видео ролика, вы узнаете, как подключить светодиодную ленту на стоп-сигналы ВАЗ 2109. Смотрим!

  1. Самым легким способом подключить светодиод к вашему автомобилю считается применение кластера (светодиодная панель), которые рассчитаны на 12В. Вы просто подключаете к сети автомобиля и радуетесь как все это легко, и как красиво они горят.
    Но есть одно очень большое «но» — при увеличении оборотов двигателя яркость диодов будет изменяться. Хорошо кластеры будут работать только, если в вашем автомобиле 12,5 В, если меньше, то гореть они будут тускло;
  2. Второй способ немного сложнее. Здесь вам придется соединить между собой кластеры, то есть сделать последовательную цепь, подключение плюса первого светодиода к минусу второго, и сделать два вывода к питанию автомобиля. Но их нужно высчитать. Например, если они предназначены для 12-14 В, то нужно 3 светодиода, в итоге 3,5 Вольт каждый светодиод, их всего три, 3,5*3=10,5 Вольт. Подключать их пока не нужно. Включите в последовательную цепь гасящий резистор примерно 100-150 Ом. С мощностью 0,5 Вт. Найти вы их сможете в магазинах радиодеталей.

Но он имеет такой же недостаток, о котором говорилось ранее, при увеличении оборотов изменяется яркость осветительного прибора. Но если вы поставите больше трех диодов в цепи, то можете избежать этого недостатка.

Их нужно соединять параллельно, то есть соединить несколько цепочек (три диода, один резистор – одна цепочка), и здесь плюс нужно подключать к плюсу следующего светодиода, а минус соответственно к минусу.

При подключении одного светодиода нужен резистор на 550 Ом, при двух 300 Ом, при трех 150 Ом, если знаете закон Ома, то все должно быть понятно. Далее, вам понадобится мультиметр. Например, у вас есть светодиод 3.5В, с током 20 мА, и вы хотите подключить его к автомобилю. Нужно измерить мультиметром напряжение в том месте, где вы собираетесь установить его.

Так выглядят безцокольные светодиоды

На разных частях авто напряжение может быть разное. Допустим после измерения у вас 13 В. Далее отнимаем 13 В от 3,5 В (напряжение светодиода), получается 9,5 В. В формуле ток должен измеряться в амперах, 20 мА = 0,02 Ампер.

Теперь по формуле вычисляем сопротивление: 9,5В/0,02А = 475 Ом. Для предотвращения нагрева резистора, нужно определить его мощность. Для этого 9,5 В (напряжение, гасящее резистор) * 0,02 (ток, проходящий через него) = 0,19 Вт. Нужно взять с небольшим запасом, примерно 0,5-1 Вт.

Далее переключаем режим в мультиметре на измерение тока, для того чтобы в разрыве между светодиодом и резистором измерить ток в цепи. На мультиметре ставим на 10 А, подключаем плюс аккумулятора к плюсу прибора, минус прибора к плюсу светодиода. Мультиметр должен показать примерно 20 мА может быть меньше, так как на резисторах и светодиодах присутствует небольшой разброс параметров.

Чем больше тока будет поступать в осветительный прибор, тем ярче он будет светить. Но яркость сказывается на сроке службы светодиода, во избежание не устанавливайте ток выше 20 мА, оптимальное значение 18 мА.

Регулировка зазоров клапанов ВАЗ 2106. Как сделать всё правильно и что для этого нужно, вы сможете узнать на нашем сайте.

, о поклейке карбоновой плёнкой авто, находится в этой статье, так же здесь, находится очень интересный и полезный материал!

Источник: https://kekso.ru/avtovaz/kak-sdelat-svetodiod-jarche/

Делаем светодиод своими руками

Вопрос: «Можно ли сделать светодиод своими руками?» среди рядовых мастеров наверняка вызовет удивление. Казалось бы, зачем придумывать то, что давно придумано и серийно выпускается? Однако существует такая категория людей, которые обожают мастерить что-то необычные. Для них конструирование светодиода – это возможность повторить эксперименты О.В. Лосева, проводимые около ста лет назад, и шанс доказать себе и друзьям реальность создания светодиода в домашних условиях.

Что понадобится

Основной конструкционный материал – кусочек карбида кремния. В обычном магазине его не купишь, но если постараться, то можно найти в интернете среди частных объявлений. Кроме него понадобится иголка от булавки, соединительные провода, два мебельных гвоздя с широкой шляпкой и регулируемый источник напряжения (0-10 вольт). Также понадобится припой и немного умения пользоваться паяльником. Для измерений параметров самодельного светодиода подойдет простой мультиметр.

Подготовительная работа

Первым делом нужно найти участок на поверхности карбида кремния, способный к излучению света. Для этого исходный материал придётся раздробить на несколько кусочков размером 2-5 мм. Затем каждый из них поочередно кладут на металлическую пластинку, подключенную к плюсу источника питания напряжением около 10В. Вторым электродом выступает острый щуп или игла, присоединённая к минусу источника питания.

Затем исследуемый кусочек нужно прижать пинцетом к пластине, и острой иглой прощупать его верхнюю часть в поисках светящегося участка. Таким образом, отбирают кристалл с наибольшей яркостью. Стоит отметить, что карбид кремния может излучать свет в спектре от оранжевого до зелёного.

Изготовление светодиода

Для удобства монтажа лучше взять гвоздик длиной 10-15 мм с большой шляпкой и хорошо её залудить. Она послужит основанием и теплоотводом для кристалла. С помощью паяльника олово на шляпке доводят до жидкого состояния и пинцетом слегка утапливают подготовленный экземпляр карбида. Естественно, что излучающий участок должен быть направлен вверх. После затвердевания припоя нужно убедиться в надёжной фиксации кристалла.

Для изготовления отрицательного электрода понадобится острая часть булавки и одножильный медный провод. Как видно из фото, обе детали лудятся и надёжно спаиваются между собой. Затем на проволоке делают петлю для придания ей свойства пружины. Свободный конец провода запаивают на шляпку второго гвоздя. Оба гвоздика прикрепляют к монтажной плате на небольшом расстоянии друг от друга.

На заключительном этапе к ножкам гвоздей подводят питание соответствующей полярности. Замыкается электрическая цепь иголкой, которую фиксируют в точке кристалла с максимальным свечением.

Плавно наращивая напряжение питания, можно определить значение, при котором яркость перестаёт интенсивно нарастать. В результате проведенных измерений падение напряжения составило 9В, а прямой ток 25 мА.

При смене полярности карбид кремния перестаёт излучать свет, что частично объясняет его полупроводниковые свойства.

Не удивлюсь, если радиолюбители со стажем выскажут свой негатив в адрес получившейся необычной конструкции, напоминающей простейший светодиод. Однако иногда собирать подобные вещи самостоятельно – это интересно и даже полезно. Примером служат радиолюбительские кружки для школьников, в которых дети знакомятся со свойствами разных материалов, учатся паять и познают азы полупроводников.

Источник: https://ledjournal.info/master-class/svetodiody-svoimi-rukami.html

Светодиоды – как работает, полярность, расчет резистора

Светодиоды – одни из самых популярных электронных компонентов, использующиеся практически в любой схеме. Словосочетание “помигать светодиодами” часто используется для обозначений первой задачи при проверке жизнеспособности схемы. В этой статье мы узнаем, как работают светодиода, сделаем краткий обзор их видов, а также разберемся с такими практическими вопросами как определение полярности и расчет резистора.

Устройство светодиода

Светодиоды — полупроводниковые приборы с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Излучаемый светодиодом свет лежит в узком диапазоне спектра. Иными словами, его кристалл изначально излучает конкретный цвет (если речь идёт об СД видимого диапазона) — в отличие от лампы, излучающей более широкий спектр, где нужный цвет можно получить лишь применением внешнего светофильтра. Диапазон излучения светодиода во многом зависит от химического состава использованных полупроводников.

 

Светодиод состоит из нескольких частей: 

  • анод, по которому подается положительная полуволна на кристалл; 
  • катод, по которому подается отрицательная полуволна на кристалл; 
  • отражатель; 
  • кристалл полупроводника; 
  • рассеиватель.  

Эти элементы есть в любом светодиоде, вне зависимости от его модели.  

Светодиод является низковольтным прибором. Для индикаторных видов напряжение питания должно составлять 2-4 В при токе до 50 мА. Диоды для освещения потребляют такое же напряжение, но их ток выше – достигает 1 Ампер. В модуле суммарное напряжение диодов оказывается равным 12 или 24 В.  

Подключать светодиод нужно с соблюдением полярности, иначе он выйдет из строя.  

Цвета светодиодов

Светодиоды бывают разных цветов. Получить нужный оттенок можно несколькими способами.  

Первый – покрытие линзы люминофором. Таким способом можно получить практически любой цвет, но чаще всего эта технология используется для создания белых светодиодов.  

RGB технология. Оттенок получается за счет применения в одном кристалле трех светодиодов красного, зеленого и синего цветов. Меняется интенсивность каждого из них, и получается нужное свечение.  

Применение примесей и различных полупроводников. Подбираются материалы с нужной шириной запрещенной зоны, и из них делается кристалл светодиода.   

Принцип работы светодиодов

Любой светодиод имеет p-n-переход. Свечение возникает при рекомбинации электронов и дырок в электронно-дырочном переходе. P-n переход создается при соединении двух полупроводников разного типа электропроводности. Материал n-типа легируется электронами, p-типа – дырками.  

При подаче напряжения электроны и дырки в p-n-переходе начинают перемещаться и занимать места. Когда носители заряда подходят к электронно-дырочному переходу, электроны помещаются в материал p-типа. В результате перехода электронов с одного энергетического уровня на другой выделяются фотоны. 

Не всякий p-n переход может излучать свет. Для пропускания света нужно соблюсти два условия: 

  • ширина запрещенной зоны должна быть близка к энергии кванта света; 
  • полупроводниковый кристалл должен иметь минимум дефектов.  

Реализовать подобное в структуре с одним p-n-переходом не получится. По этой причине создаются многослойные структуры из нескольких полупроводников, которые называются гетероструктурами.  

Для создания светодиодов используются прямозонные проводники с разрешенным прямым оптическим переходом зона-зона. Наиболее распространенные материалы группы А3В5 (арсенид галлия, фосфид индия), А2В4 (теллурид кадмия, селенид цинка).  

Цвет светоизлучающего диода зависит от ширины запрещенной зоны, в которой происходит рекомбинация электронов и дырок. Чем больше ширина запрещенной зоны и выше энергия квантов, тем ближе к синему излучаемый свет. Путем изменения состава можно добиться свечения в широком оптическом диапазоне – от ультрафиолета до среднего инфракрасного излучения.  

Светодиоды инфракрасного, красного и желтого цветов изготавливаются на основе фосфида галлия, зеленый, синий и фиолетовый – на основе нитридов галлия.  

Виды светодиодов, классификация

По предназначению выделяют индикаторные и осветительные светодиоды. Первые используются для стилизации, декоративной подсветки – например, украшение зданий, рекламные баннеры, гирлянды.  Осветительные приборы используются для создания яркого освещения в помещении.  

По типу исполнения выделяют: 

  • Dip светодиоды. Они представляют собой кристаллы, заключенные в цилиндрическую линзу. Относятся к индикаторным светодиодам. Существуют монохромные и многоцветные устройства. Используются редко из-за своих недостатков: большой размер, малый угол свечения (до 120 градусов), падение яркости излучения при долгом функционировании на 70%, слабый поток света.Dip светодиоды
  • Spider led. Такие светодиоды похожи на предыдущие, но имеют 4 выхода. В таких диодах оптимизирован теплоотвод, повышается надежность компонентов. Активно используются в автомобильной технике.  
  • Smd – светодиоды для поверхностного монтажа. Могут относиться как к индикаторным, так и к осветительным светодиодам.Smd
  • Cob (Chip-On-Board) – кристалл установлен непосредственно на плате. К преимуществам такого решения относятся защита от окисления, малые габариты, эффективный отвод тепла и равномерное освещение по всей площади. Светодиоды такой марки являются самыми инновационными. Используются для освещения. На одной подложке может быть установлено более 9 светодиодов. Сверху светодиодная матрица покрывается люминофором. Активно используются в автомобильной индустрии для создания фар и поворотников, при разработке телевизоров и экранов компьютеров.  Cob
  • Волоконные – разработка 2015 года. Могут использоваться в производстве одежды. Волоконные
  • Filament также является инновационным продуктом. Отличаются высокой энергоэффективностью. Используются для создания осветительных ламп. Важное преимущество – возможность осуществления монтажа напрямую на подложку из стекла. Благодаря такому нанесению есть возможность распространения света на 360 градусов. Конструкция состоит из сапфирового стекла с диаметром до 1,5 мм и специально выращенных кристаллов, которые соединены последовательно. Число кристаллов обычно ограничивается 28 штуками. Светодиоды помещаются в колбу, которая покрыта люминофором. Иногда филаментные светодиоды могут относить к классу COB изделий.Filament
  • Oled. Органические тонкопленочные светодиоды. Используются для построения органических дисплеев. Состоят из анода, подложки из фольги или стекла, катода, полимерной прослойки, токопроводящего слоя из органических материалов. К преимуществам относятся малые габариты, равномерное освещение по всей площади, широкий угол свечения, низкая стоимость, длительный срок службы, низкое потребление электроэнергии. Oled
  • В отдельную группу выделяются светодиоды, излучающие в ультрафиолетовом и инфракрасном диапазонах. Они могут быть с выводами, так и в виде smd исполнения. Используются в пультах дистанционного управления, бактерицидных и кварцевых лампах, стерилизаторах для аквариумов.  

Светодиоды могут быть:

  • мигающими – используются для привлечения внимания;
  • многоцветными мигающими;
  • трехцветными – в одном корпусе есть несколько несвязанных между собой кристаллов, которые работают как по отдельности, так и все вместе;
  • RGB;
  • монохромными.

Светодиоды классифицируются по цветовой гамме. Для максимально точной идентификации цвета в документации прибора указывается его длина волны излучения.  

Белые светодиоды классифицируются по цветовой температуре. Они бывают теплых оттенков (2700 К), нейтральных (4200 К) и холодных (6000 К). 

По мощности выделяют светодиоды, потребляющие единицы мВт до десятков Вт. Напрямую от мощности зависит сила света.  

Полярность светодиодов

Полярность светодиодов

При неправильном включении светодиод может сломаться. Поэтому важно уметь определять полярность источника света.  Полярность – это способность пропускать электрический ток в одном направлении.  

Полярность моно определить несколькими способами: 

  • Визуально. Это самый простой способ. Для нахождения плюса и минуса у цилиндрического диода со стеклянной колбой нужно посмотреть внутрь. Площадь катода будет больше, чем площадь анода. Если посмотреть внутрь не получится, полярность определяется по контактам – длинная ножка соответствует положительному электроду. Светодиоды типа  SMD имеют метки, указывающие на полярность. Они называются скосом или ключом, который направлен на отрицательный электрод. На маленькие smd наносятся пиктограммы в виде треугольника, буквы Т или П. Угол или выступ указывают на направление тока – значит, этот вывод является минусом. Также некоторые светодиоды могут иметь метку, которая указывает на полярность. Это может быть точка, кольцевая полоска.  
  • При помощи подключения питания. Путем подачи малого напряжения можно проверить полярность светодиода. Для этого нужен источник тока (батарейка, аккумулятор), к контактом которого прикладывается светодиод, и токоограничивающий резистор, через который происходит подключение. Напряжение нужно повышать, и светодиод должен загореться при правильном включении.  
  • При помощи тестеров. Мультиметр позволяет проверить полярность тремя способами. Первый – в положении проверка сопротивления. Когда красный щуп касается анода, а черный катода, на дисплее должно загореться число , отличное от 1. В ином случае на экране будет светиться цифра 1. Второй способ – в положении прозвонка. Когда красный щуп коснется анода, светодиод загорится. В ином случае он не отреагирует. Третий способ – путем установки светодиода в гнездо для транзистора. Если в отверстие С (коллектор) будет помещен катод – светодиод загорится.  
  • По технической документации. Каждый светодиод имеет свою маркировку, по которой можно найти информацию о компоненте. Там же будет указана полярность электродов.  

Выбор способа определения полярности зависит от ситуации и наличия у пользователя нужного инструмента.  

Расчет сопротивления для светодиода

Диод имеет малое внутреннее сопротивление. При подключении его напрямую к блоку питания, элемент перегорит. Чтобы этого не случилось, светодиод подключается к цепи через токоограничивающий резистор. Расчет производится по закону Ома: R=(U-Uled)/I, где R – сопротивление токоограничивающего резистора, U – питание источника; Uled – паспортное значение напряжения для светодиода, I – сила тока. По полученному значению и подбирается мощность резистора.  

Важно правильно рассчитать напряжение. Оно зависит от схемы подключения элементов.  

Можно не производить расчет сопротивления, если использовать в цепи мощный переменный или подстроечный резистор. Токоограничивающие резисторы существуют разного класса точности. Есть изделия на 10%, 5% и 1 % – это значит, что погрешность варьируется в указанном диапазоне.  

Выбирая токоограничивающий резистор, нужно обратить внимание и на его мощность. почти всегда, если при малом рассеивании тепла устройство будет перегреваться и выйдет из строя. Это приведет к разрыву электрической цепи.  

Когда нужно использовать токоограничивающий резистор: 

  • когда вопрос эффективности схемы не является основным – например, индикация; 
  • лабораторные исследования. 

В остальных случаях лучше подключать светодиоды через стабилизатор – драйвер, что особенно это актуально в светодиодных лампах. 

Онлайн – сервисы и калькуляторы для расчета резистора:

Источник: https://ArduinoMaster.ru/datchiki-arduino/printsip-raboty-i-vidy-svetodiodov/

8 способов сделать так, чтобы LED-индикаторы бытовой техники не бесили

Индикаторы работы есть во многих бытовых приборах. И если днём они не мешают, то вечером превращаются в орудия пыток, которые пытаются ослепить своим ярким свечением.

Излучение зелёных и красных светодиодов обычно довольно мягкое, а вот голубые сильно бьют по глазам и освещают комнату не хуже ночника. К счастью, существует достаточно способов сделать их менее яркими или даже полностью нейтрализовать.

1. Уберите устройства из поля зрения

Самый простой способ — развернуть устройство к стене. Или убрать куда-нибудь подальше, где оно не будет попадаться на глаза. Можно просто поставить перед ним другой предмет, который как щит закроет от ненавистного свечения.

2. Отключите индикаторы в настройках

Функция есть не везде, но на сложной современной технике она, как правило, доступна. Например, так можно отключить светодиоды на передней панели роутера или ТВ-приставки.

3. Залепите светодиоды

Да, это первое, что приходит на ум. Способ не сложнее предыдущих, при этом более гибкий. Если правильно подобрать материал для заклеивания глазков индикаторов, можно приглушить или полностью скрыть их свечение.

Вариантов масса. Выбирать стоит исходя из желаемого результата и цвета корпуса техники:

  • Чёрная изолента полностью блокирует огни, синяя и белая приглушают, оставляя индикатор функциональным.
  • Малярная лента обеспечивает самый слабый эффект. При необходимости его легко усилить, добавив дополнительные слои.
  • Скотч можно закрасить маркером и достичь необходимой степени затемнения, а то и полностью скрыть индикатор.
  • Тонировочная плёнка для авто отлично приглушает свет, в то же время оставляя его различимым.

4. Используйте специальные стикеры

Более продвинутая вариация предыдущего метода для ленивых. Купите готовые стикеры различной формы и размера с эффектом затемнения вплоть до полного. Они не оставляют липких следов после отклеивания.

5. Закрасьте индикаторы лаком

Обычный лак для ногтей позволяет бороться с ослепляющими светодиодами не хуже всевозможных наклеек. Подберите цвет, наложите необходимое количество слоёв, и получите аккуратный тюнинг индикаторов с желаемым эффектом затемнения.

6. Зашлифуйте поверхность индикатора

Можно приглушить свечение индикаторов, сделав их поверхность матовой. Возьмите мелкую наждачную бумагу и аккуратно зашкурьте светодиод или его стёклышко. После этого свет станет рассеянным, а не направленным и не будет слепить.

7. Физически отключите светодиоды

Если гарантия на электронику давно закончилась, а вы умеете держать в руках отвёртку и не боитесь сломать устройство, можно полностью отключить индикаторы, разорвав цепи питания. Для этого достаточно перекусить одну из ножек светодиода или перерезать дорожку на плате.

8. Добавьте в цепь индикатора сопротивление

Вариант для тех, кто дружит с паяльником. Суть метода в том, чтобы снизить напряжение питания индикатора, тем самым уменьшив его яркость. Необходимо подобрать резистор с нужным номиналом и впаять его перед светодиодом.

Как сделать светодиодные мощные дневные ходовые огни (LED-ДХО)

как сделать светодиод ярче
 18 июль 2016  Лада.Онлайн    53 155     

В настоящее время вариантов реализации дневных ходовых огней из светодиодов огромное множество, но добиться яркого свечения и равномерного рассеивания света от диодов получается только при помощи нескольких способов. Расскажем простой метод изготовления сверхярких ДХО, используя легкодоступные материалы.

Потребуется

  1. Светодиоды. Лучше всего использовать текстолит, на который напаиваются светодиоды (например, SMD 3528). Более простой вариант — светодиодная лента с большим количеством светодиодов (не менее 120 светодиодов на 1 метр). См. каталог AliExpress.
  2. Светорассеиватель, который хорошо рассеивает свет (толщиной не менее 2 мм).

    Отлично подойдет органическое стекло (оргстекло или PLEXIGLAS) белого цвета, под названием «молочный акрил». Купить его можно в рекламных агентствах, занимающихся наружной рекламой.

  3. Светоотражающая окантовка (толщиной 10 мм).

    Подойдет кусок хромированного алюминия (например, от канистры с моторным маслом ZIC) или алюминий на самоклеящейся основе (типа скотча).

Как сделать светодиодные яркие ходовые огни

  1. Вырезаем светорассеиватель подходящей формы (это могут быть кольца или полукольца по типу ангельских глазок, загнутые или прямые линии), используя пилку по металлу или дремель.
  2. Обклеить внутренние и внешние стороны светорассеивателя светоотражателем. Если выбрали куски алюминия, то приклеиваем его клеем (например, эпоксидным).
  3. Вставляем в получившееся углубление светодиодную ленту или плату из текстолита со светодиодами.

Как установить LED-ДХО

Разбираем блок-фару (на примере XRAY, Priora или Granta/Kalina 2) и приклеиваем самодельные LED-ДХО к маске (внутренней подложке фары) при помощи клея (например, эпоксидного). Провода аккуратно укладываем и фиксируем, чтобы во время вибрации они не выскочили из своих посадочных мест.

Как подключить дневные ходовые огни

Если нужно, чтобы светодиодные ходовые огни включались вместо габаритов, то подключать их следует вместо габаритных огней. Если хотите правильно подключить ходовые огни, чтобы они удовлетворяли требования ГОСТ, тогда воспользуйтесь этой схемой. Не забывайте про стабилизатор напряжения для ходовых огней.

Стоит отметить, что такой тюнинг фар подойдет не только для всех автомобилей Лада (XRAY, Веста, Ларгус, Гранта, Калина, Приора или Нива 4х4), но может использоваться и на иномарках.

Получившиеся светодиодные ДХО, будут иметь равномерное и яркое свечение, которое не сравнить с ангельскими глазками, сделанных из трубок (оргстекло).

Напомним, более простой способ тюнинга фар — установить гибкие ДХО.

Источник: https://xn--80aal0a.xn--80asehdb/do-my-self/tuning/tuning-lada-vesta/1426-kak-sdelat-svetodiodnye-moschnye-dnevnye-hodovye-ogni-led-dho.html

Характеристики светодиодов для фонариков. Ремонт и увеличение мощности

как сделать светодиод ярче

Рассмотрим светодиодную продукцию, начиная от старых 5-мм, до сверхъярких мощных светодиодов мощность которых доходит до 10 Вт.

Чтобы выбрать «правильный» фонарик для своих нужд, нужно разобраться в том какие бывают светодиоды для фонариков и их характеристики.

Какие диоды используются в фонариках?

Мощные светодиодные фонари начались с устройств с матрицей 5-мм.

LED фонари в совершенно разных исполнениях, от карманных до кемпинговых, получили широчайшее распространение в середине 2000-х. Их цена заметно снизилась, а яркость и долгий срок службы от одного заряда батареек сыграли свою роль.

5-ти миллиметровые белые сверхъяркие светодиоды потребляют от 20 до 50 мА тока, при падении напряжения 3.2-3.4 вольта. Сила света – 800 мкд.

Очень хорошо показывают себя в миниатюрных фонариках-брелках. Маленький размер позволяет носить такой фонарик с собой. Питаются они либо от «мини-пальчиковых» батареек, либо от нескольких круглых «таблеток». Часто используются в зажигалках с фонариком.

Вот какие светодиоды в китайских фонариках устанавливаются уже много лет, но их век постепенно истекает.

В поисковых фонарях при большом размере отражателя есть возможность смонтировать десятки таких диодов, но такие решения постепенно отходят на второй план, а выбор покупателей падает в пользу на фонарей на мощных светодиодах типа Cree.

Поисковый фонарь на 5мм светодиодах

Такие фонари работают от батареек типа АА, ААА или аккумуляторов. Стоят недорого и проигрывают как в яркости, так и в качестве современным фонарям на более мощных кристаллах, но об этом ниже.

В дальнейшем развитии фонарей производители перебрали множество вариантов, но рынок качественной продукции занимают фонари с мощными матрицами или дискретными светодиодами.

Какие светодиоды используют в мощных фонариках?

Под мощными фонарями подразумеваются современные фонари различных типов начиная от тех, что размером с палец, заканчивая огромными поисковыми фонарями.

В такой продукции в 2017 году актуальна марка Cree. Это название американской компании. Её продукция считается одной из наиболее передовых в области светодиодной техники. Альтернативой являются LED от производителя Luminus.

Такие вещи значительно превосходят светодиоды с китайских фонариков.

Какие светодиоды Cree в фонариках устанавливаются наиболее часто?

Модели носят название состоящие из трёх четырёх символов, разделённых дефисом. Так диоды Cree XR-E, XR-G, XM-L, XP-E. Модели XP-E2, G2 чаще всего используются для небольших фонариков, а XM-L и L2 – очень универсальные.

Их используют, начиная от т.н. EDC фонарей (для повседневного ношения) – это маленькие фонари размером меньше ладони, до серьёзных поисковых фонарей большого размера.

Давайте рассмотрим характеристики мощных светодиодов для фонариков.

характеристика светодиодов для фонарей – это световой поток. От неё зависит яркость вашего фонаря и количество света, которое может дать источник. Разные светодиоды, потребляя одинаковое количество энергии, могут существенно отличаться по яркости.

Рассмотрим характеристики светодиодов в больших фонариках, прожекторного типа:

Продавцы часто указывают не полное название диода, его типа и характеристики, а сокращенную, несколько иную цифробуквенную маркировку:

  • Для XM-L: T5; T6; U2;
  • XP-G: R4; R5; S2;
  • XP-E: Q5; R2; R;
  • для XR-E: P4; Q3; Q5; R.

Фонарь может так и называться, «Фонарь EDC T6», информации в такой краткости более чем достаточно.

Ремонт фонариков

К сожалению цена таких фонариков довольно большая, как и самих диодов. И не всегда есть возможность приобрести новый фонарь, в случае поломки. Давайте разберемся как поменять светодиод в фонарике.

Для ремонта фонарика необходим минимальный набор инструментов:

  • Паяльник;
  • флюс;
  • припой;
  • отвёртка;
  • мультиметр.

Чтобы добраться до источника света нужно отвинтить головную часть фонаря, она обычно закреплена на резьбовом соединении.

В режиме проверки диодов или измерения сопротивления проверьте исправность светодиода. Для этого прикоснитесь щупами черным и красным к выводам светодиода, сначала в одном положении, а затем поменяйте местами красный и черный.

Если диод исправен – то в одном из положений будет низкое сопротивление, а в другом – высокое. Таким образом вы определяете, что диод исправен и проводит ток только в одном направлении. Во время проверки диод может излучать слабый свет.

В противном случае в обеих положениях будет короткое замыкание или высокое сопротивление (обрыв). Тогда нужна замена диода в фонаре.

Теперь нужно выпаять светодиод из фонаря и, соблюдая полярность, впаять новый. Будьте внимательны при выборе светодиода, учтите его потребление тока и напряжение, на которое тот рассчитан.

Если вы будете пренебрегать этими параметрами – в лучшем случае фонарик будет быстро садиться, в худшем – драйвер выйдет из строя.

Драйвер – это устройства для питания светодиода стабилизированным током от разных источников. Промышленно изготавливаются драйвера для питания от сети 220 вольт, от автомобильной электросети – 12-14.7 вольт, от Li-ion аккумуляторов, например, типоразмера 18650. Драйвером оборудовано большинство мощных фонарей.

Увеличиваем мощность фонаря

Если вас не устраивает яркость вашего фонаря или вы разобрались как заменить светодиод в фонарике и захотели его модернизировать, прежде чем покупать сверхмощные модели изучите основные принципы работы LED и ограничения в их эксплуатации.

Диодные матрицы не любят перегрева – это главный постулат! А замена светодиода в фонарике на более мощный может привести к такой ситуации. Обратите внимание на модели, в которые устанавливаются более мощные диоды и сравните со своей, если они подобны по размерам и конструктиву – меняйте.

Если ваш фонарь меньше — потребуется дополнительное охлаждение. Подробнее о изготовлении радиаторов своими руками мы писали здесь.

Если вы попытаетесь установить в миниатюрный фонарик-брелок такой гигант, как Сree MK-R, он у вас быстро выйдет из строя от перегрева и это будут зря потраченные средства. Незначительное повышение мощности (на пару ватт) допустимо без модернизации самого фонарика.

В остальном процесс замены марки светодиода в фонарике на более мощную – описан выше.

Фонари Police

Они зарекомендовали себя на протяжении многих лет и с каждой новой моделью этих фонарей спрос не утихает. Новинкой на отечественном рынке стала модель с электрошокером.

LED фонарик Police с шокером

Такие фонари ярко светят и могут выступать в роли средства самообороны. Однако и в них случаются проблемы со светодиодами.

Как заменить светодиод в фонарике Police

Широкий модельный ряд очень трудно охватить в рамках одной статьи, но можно дать общие рекомендации по ремонту.

  1. При ремонте фонаря с электрошокером будьте аккуратны, желательно используйте резиновые перчатки, чтобы избежать удара током.
  2. Фонари с пылевлагозащитой собраны на большом количестве винтов. Они отличаются по длине, поэтому делайте пометки откуда вы выкрутили тот или иной винт.
  3. Оптическая система фонарика Police позволяет регулировать диаметр светового пятна. При разборке на корпусе сделайте отметки в каком положении стояли детали перед снятием, иначе будет трудно поставить блок с линзой обратно.

Замена светодиода, блока преобразователя напряжения, драйвера, аккумулятора возможна с применением стандартного набора для пайки.

Какие светодиоды стоят в китайских фонариках?

Многие товары сейчас покупаются на aliexpress, где можно найти как оригинальную продукцию, так и китайские копии, которые не соответствуют заявленному описанию. Цена за такие приборы бывает сопоставимой с ценой на оригинал.

В фонарике, где заявлен светодиод Cree, его может на самом деле не быть, в лучшем случае будет стоять диод откровенно другого типа, в худшем такой, который внешне будет трудно отличим от оригинала.

Что это может за собой повлечь? Дешевые светодиоды выполняются в низкотехнологичных условиях и не выдают заявленной мощности. Имеют низкий КПД, от того у них усиленный нагрев корпуса и кристалла. Как уже было сказано, что перегрев – самый злой враг для Led приборов.

Так происходит потому, что при нагревании через полупроводник увеличивается ток, вследствие чего нагрев становится еще сильнее, мощности выделяется еще более, лавинообразно это приводит к пробою или обрыву светодиода.

Если постараться и потратить время на поиск информации, можно определить оригинальность продукции.

Сравните оригинал и подделку cree

LatticeBright – это китайский производитель светодиодов, который делает продукцию очень похожей на Cree, наверное это совпадение дизайнерской мысли (сарказм).

Сравнение китайской копии и оригинала Cree

На подложках эти клоны выглядят следующим образом. Можно заметить разнообразие форм подложек для светодиодов, производимое в китае.

Определение подделки по подложке для LED

Подделки изготавливаются довольно умело, многие продавцы не указывают об этом «бренде» в описании товара и о том, где произведены светодиоды для фонарей. Качество таких диодов не самое худшее среди китайского барахла, но и далеко от оригинала.

Установка светодиода вместо лампы накаливания

У многих в старых вещах пылятся коногонки или фонари на лампе накаливания и вы можете легко сделать его светодиодным. Для этого есть либо готовые решения, либо самодельные.

С помощью разбитой лампочки и светодиодов, если добавить немного смекалки и припоя, можно сделать отличную замену.

Железный бочонок в данном случае нужен для улучшения отвода тепла от LED. Далее нужно припаять все детали друг к другу и закрепить клеем.

При сборке будьте аккуратны – избегайте замыкания выводов, в этом поможет термоклей или термоусадочная трубка. Центральный контакт лампы нужно распаять – образуется отверстие. Продеть через него вывод резистора.

Дальше нужно припаять свободный вывод светодиода к цоколю, а резистора к центральному контакту. Для напряжения 12 вольт нужен резистор 500 Ом, а для напряжения в 5 В – 50-100 Ом, для питания от Li-ion 3.7В аккумулятора – 10-25Ом.

Как сделать из лампы накаливания светодиодную

Подобрать светодиод для фонарика гораздо сложнее чем его заменить. Нужно учитывать массу параметров: от яркости и угла рассеивания, до нагрева корпуса.

Кроме того, нельзя забывать об источнике питания для диодов. Если вы освоите все описанное выше – ваши приборы будут светить долго и качественно!

Оцените, пожалуйста, статью. Мы старались:) (18 4,78 из 5)

Источник: https://SvetodiodInfo.ru/texnicheskie-momenty/xarakteristiki-svetodiodov-dlya-fonarikov.html

Сверхяркие светодиоды: особенности монтажа, питания, конструкции

как сделать светодиод ярче

Осветительными приборами, где в качестве источников света используются сверхяркие светодиоды, уже никого не удивишь. Спрос на такие устройства неизменно растет, это напрямую связано с низким энергопотреблением этих приборов. Учитывая, что на освещение тратится около 25-35% потребляемой электроэнергии, экономия будет весьма ощутимой.

Различные виды сверхярких светодиодных источников освещения

Но учитывая относительно высокую стоимость сверхярких светодиодов, в силу их конструктивных особенностей, говорить о полном переходе на этот тип освещения еще не своевременно. По мнению специалистов, этот процесс займет от 5 до 10 лет, именно столько понадобится на отладку и внедрение новых технологий.

Кратко об эффективности

Эффективностью осветительного прибора принято считать соотношение вырабатываемого светового потока (измеряется в люменах) к потребляемой электроэнергии (ватт). Качественная лампа с нитью накала имеет эффективность около 16 люменов на ватт, флуоресцентная (энергосберегающая) — в четыре раза больше (64 лм/Вт), для длинных дневных ламп этот показатель в районе 80 лм/Вт.

КПД сверхярких светодиодов, выпускающихся массово на текущий момент, примерно такой же, как у ламп дневного света. Обратите внимание, что мы говорим именно про массовую продукцию. Что касается теоретического предела для сверхярких светодиодных источников, то он определен порогом в 320 лм/Вт.

Как обещают многие производители, в ближайшие несколько лет КПД можно будет повысить до уровня 213 лм/Вт.

Влияние особенностей конструкции на стоимость

Для изготовления сверхярких светодиодных источников света может применяться один из двух способов:

  • чтобы получить свет, близкий по спектру к белому, используются три кристалла установленных в одном корпусе. Один красный, второй синий и третий зеленый;
  • применяется кристалл, излучающий в голубом или ультрафиолетовом спектре, он подсвечивает линзу покрытую люминофором, в результате излучение преобразуется в свет, близкий по спектру к природному.

Не смотря на то, что первый вариант более эффективен, его реализация обходится несколько дороже, что отрицательно отражается на распространенности. Помимо этого спектр света, излучаемый таким источником, отличается от природного.

У приборов, изготовленных по второй технологии, меньше эффективность. Стоит также учитывать, что люминофор содержит в себе сложный по составу композит на основе церия и иттрия, которые сами по себе стоят недешево. Собственно, этим и объясняется относительно высокая стоимость сверхярких светодиодов белого света. Конструкция такого устройства показана на рисунке.

Устройство сверхяркого светодиода

Обозначения:

  • А – печатный проводник;
  • В – основание с повышенной теплопроводимостью;
  • C – защитный корпус устройства;
  • D – паста-припой;
  • E – кристалл светодиода, излучающий ультрафиолетовый или голубой свет;
  • F –люминофорное покрытие;
  • G – клей (может быть заменен эвтектическим сплавом);
  • H – провод, соединяющий кристалл и вывод;
  • K – отражатель;
  • J – теплоотводящее основание;
  • L – вывод питания;
  • M – диэлектрическая прослойка.

Особенности монтажа

На работу сверхярких светодиодов оказывает влияние степень нагрева кристалла и самого p-n перехода. От первого напрямую зависит срок эксплуатации устройства, от второго – уровень светового потока. Поэтому для длительной службы сверхярких светодиодов необходимо организовать надежный теплоотвод, делается это при помощи радиатора.

Следует принять во внимание, что теплопроводящие основания этих полупроводников, как правило, проводят электричество. Поэтому когда устанавливается несколько элементов на один радиатор,  следует позаботиться о надежной электроизоляции оснований.

Хороший теплоотвод значительно увеличивает срок службы сверхярких светодиодов

Остальные правила монтажа практически такие же, как у обычных диодов, то есть необходимо соблюдение полярности, как при установке самой детали, так и подключении питания.

Особенности питания

Учитывая относительно высокую стоимость сверхярких светодиодов, очень важно использовать для их работы надежные и качественные источники питания, поскольку эти полупроводниковые элементы критичны к токовой перегрузке.

После нештатного режима прибор может остаться работоспособным, но мощность излучаемого светового потока существенно сократится. Помимо этого такой элемент с большой вероятностью станет причиной поломки и других, совместно подключенных светодиодов.

Прежде, чем говорить о драйверах для сверхярких светодиодов, коротко расскажем об особенностях их питания. В первую очередь необходимо принять во внимание следующие факторы:

  • мощность светового потока, излучаемая этими элементами, напрямую зависит от величины протекающего через них электротока;
  • для сверхярких светодиодов характерна нелинейная ВАХ (вольт-амперная характеристика);
  • температура оказывает сильное влияние на ВАХ этих полупроводниковых приборов.

Ниже показано изменение ВАХ при температуре полупроводникового элемента (сверхяркий smd-светодиод) 20 °С и 70 °С.

Изменение характеристик от влияния температуры

Как видно из графика, при подаче на полупроводник стабильного напряжения величиной 2 В, электроток, проходящий через него, меняется в зависимости от температуры. При нагреве кристалла 20°С он будет равен 14 мА, когда температура повысится до 70°С, этот параметр будет соответствовать 35 мА.

Результатом такой разницы будет изменение мощности светового потока при одном и том же питающем напряжении. Исходя из этого, необходимо стабилизировать не напряжение, а электроток, проходящий через полупроводник.

Такие блоки питания называются светодиодными драйверами, они представляют собой обычные стабилизаторы тока. Это устройство можно приобрести готовое или собрать самостоятельно, в следующем разделе мы приведем несколько типичных схем драйверов.

Самодельный светодиодный драйвер

Предоставим вашему вниманию несколько вариантов драйверов на основе специализированных микросхем компании Monolithic Power System, использование которых существенно упрощает конструкцию. Схемы приводятся в качестве примера, полное описание типового включения можно найти в даташит на микросхемы.

Вариант первый на базе понижающего преобразователя МР4688.

Пример включения МР4688

Данный драйвер может работать с напряжениями от 4,5 до 80 В, порог максимального выходного электротока 2 А, что позволяет запитать светильник на сверхярких светодиодах большой мощности. Уровень электротока, проходящего через светодиоды, регулируется сопротивлением R . Реализация ШИМ-диммирования с частотой 20 кГц позволяет плавно изменять протекающий через светодиод электроток.

Второй вариант драйвера на базе микросхемы МР2489. Ее компактный корпус (QFN8 или TSOT23-5) делает возможным размещение драйвера в цоколе MR16, используемый галогенными лампами, что позволяет заменить последние светодиодными. Типовая схема подключения МР2489 показана на рисунке.

Драйвер на базе МР2489

Приведенная выше схема позволяет включать два параллельных светодиода, у каждого из которых рабочий ток 350 мА.

Последний вариант драйвера на базе микросхемы МР3412, который может быть использован в переносных фонариках. Отличительная особенность такой схемы – возможность работы от пальчикового элемента питания АА.

Драйвер для фонарика на базе МР3412

Источник: https://www.asutpp.ru/sverxyarkie-svetodiody.html

Хотите вечных светодиодов? Расчехляйте паяльники и напильники. Или домашнее освещение самодельщика

Когда-то давным давно, когда я еще учился в школе, а на дворе был конец перестройки, мой дядя (заронивший в меня интерес к электронике) припер домой сумку вынесенного через проходную завода добра. Собственно, такие сумки он приносил домой вполне регулярно, пополняя запасы, хранившиеся в диване. Диван этот, как вы догадываетесь, манил, и иногда в отсутствии дяди я в него заглядывал с восторгом.

Но кое-что из этой сумки в диван не попало, а попало в мои руки. Дядя мне вручил пачку — штук десять — макетных плат, и новенькую нераспечатанную коробку дефицитных, да и не дешевых в то время светодиодов. Причем светодиоды были не простые: вместо привычной маркировки АЛ-что-то там на коробке стоял код из четырех цифр, как я понял — они были экспериментальные. И они были яркие. По сравнению с привычными АЛ307 или АЛ310 — просто ослепительные.

И их к тому же было много — штук 50.

Идея «куда это богатство применить» возникла моментально: светодиоды были распаяны на одной из макетниц — сколько влезло (влезли не все), и из них вышел великолепный красный фонарь для печати фотографий, который абсолютно не засвечивал фотобумагу даже в упор. Правда, тут же я узнал о том, что «светодиоды не греются» — это вранье, так что ток пришлось снизить вдвое, с 10 мА на светодиод до 5. А еще через полгода успешной эксплуатации узнал и о том, что «светодиоды не перегорают» — это тоже неправда: первый светодиод в сборке погас, оказался пробит. А со временем и весь фонарь пришел в негодность. И вот сейчас я снова слышу из каждого утюга про «вечные» светодиодные лампочки, а дома за неполный год перехода на светодиодные лампы перегорела уже третья по счету.

Почему светодиодные лампочки не вечны?

Да потому что ничего нет вечного. Светодиод, к тому же — штука тонкая. Буквально. В его структуре имеются слои толщиной в считанные нанометры, образующие квантовые ямы.

Диффузия и электромиграция к таким слоям безжалостны — они размывают их, создают дефекты, постепенно снижая световыход и увеличивая вероятность катастрофы в масштабах крохотного кристалла, в котором, к слову, выделяется световая и тепловая энергия, удельное значение которой в расчете на кубический сантиметр p-n перехода можно сравнить разве что с ядерным взрывом (немного утрировано, но сами прикиньте плотность энерговыделения). Чем светодиод горячее, тем все эти негативные процессы будут идти быстрее. А он, как мы уже в курсе, греется. Греется даже тогда, когда через него идет ток в 10 миллиампер. А тем более — когда это мощный прибор, ток через который как минимум 100 мА, а бывает — и ампер, и даже три ампера. И в тепло, не смотря на всю энергетическую эффективность светодиодов, переходит значительная доля от подведенной к светодиоду электроэнергии. От двух третей до трех четвертей. А куда охлаждаться светодиодам в светодиодной лампочке? А некуда, по большому счету. Светодиод сам по себе спроектирован, чтобы его можно было охлаждать. Кристалл припаян к массивному основанию из меди или высокотеплопроводной керамики, у этого основания есть специальная площадка для пайки к внешнему теплоотводу, в роли которой — плата с алюминиевой или медной подложкой. А подложка эта, по идее, должна быть через термопасту прикручена к хорошему радиатору с большой площадью. А прикручена она в лучшем случае к металлическому корпусу светодиодной лампы, площадь которого совершенно недостаточна для рассеивания более чем нескольких ватт тепла, да еще и в закрытом плафоне. В худшем — корпус вообще пластмассовый, и в этот корпус еще попадает тепло от драйвера и от не вышедшего наружу и потерявшегося в недрах лампочки света. Вот и жарятся светодиоды при температуре, превышающей 100, а то и 130°С. И, кстати, не только светодиоды, но и драйвер, который тоже нередко выходит из строя.

Что делать-то?

Одно из трех. Либо мы, оставив на месте старую люстру, ставим в нее лампочки меньшей мощности. Они меньше будут греться и у них больше шансов прожить долго.

Разумеется, в комнате станет темно: мы вернемся во времена, когда в люстре из экономии и пожаробезопасности стояли лампочки по 25 ватт, от которых ушли, поставив на их место пятнадцативаттные энергосберегайки, сделавшие из темной берлоги светлое помещение, в котором приятно находиться. Либо мы покупаем новую люстру, в которую можно вкрутить больше лампочек.

Так мы останемся со светлой комнатой и получим (возможно) более долгую жизнь лампочек. Только на люстру, как и на лампочки, придется потратиться. И, наконец, третий вариант: мы забываем само понятие «светодиодная лампа», как страшный сон и ставим на место люстры специально спроектированный светодиодный светильник.

Продуманный и в плане хорошего использования светового потока (у светодиодных ламп типа «висит груша — нельзя скушать» с этим в приборах, рассчитанных на лампы накаливания, не всегда хорошо — они плоховато светят вбок и назад), и в плане качественного охлаждения.

Рынок

На рынке есть такие светильники. Но по большей части они во-первых, дорогие, а во вторых — страшные. Этакие промышленные штуковины, которые уместны в гараже, цеху, в торговом зале гипермаркета, в офисе, наконец — но не в квартире. Нет, есть и красивые, и дизайнерские очень эффектно выглядящие светильники. Но — во-первых, опять же, цена, а во-вторых, в жертву дизайну принесено охлаждение.

Так, классическая китайская светодиодная люстра-блин — это пятьдесят ватт светодиодов, сидящих на алюминиевой плате в виде кольца диаметром 45 см и шириной сантиметров 8. И — все. Никакого тебе корпуса с оребрением, ничего. И опять-таки, плата в почти наглухо закрытом корпусе. Ну хоть драйвер чуть наружу вынесен. Вердикт: жить будет, как светодиодная лампочка.

Только когда сдохнет, менять придется не лампочку за 150 рублей, а люстру за пять-десять тысяч. В общем, выход, кажется, один: умелые руки.

Самодельный светильник: проектирование

Сразу скажу: светильник будет не на светодиодной ленте и без блютуса. Для начала, оценим, сколько нам нужно света. Тут дело вкуса, но я люблю, когда в жилище светло. Всякий интимный полумрак я люблю в особых случаях, в романтичной обстановке, но в обычной жизни он навевает тоску. Считать можно по-всякому, но я воспользуюсь тем фактом, что с люстрой с пятью энергосберегайками по 15 ватт, дававшими каждая по 950 лм, в комнате было хорошо. То есть 5 килолюмен нам будет достаточно.

Теперь идем на сайт Cree, находим там Datasheet на модули CXA2530. Почему именно на них? Да потому что у меня есть несколько штук таких модулей, и с ними удобно работать: к ним просто припаиваются провода, а сами модули сажаются прямо на радиатор с помощью прилагающегося фланца. А еще их несложно купить — известный китайский интернет-магазин в помощь. У имеющихся у меня модулей бин светового потока Т4, это соответствует номинальному световому потоку 3440-3680 лм.

Сразу 20% от этой цифры отнимаем — они потеряются на рассеивателе. Получаем световой поток 2750-2950 лм, а учитывая, что получается этот поток при мощности около 30 Вт, получаем потребную для освещения мощность (подведенную к светодиодам) около 50 Вт. Поскольку комната у нас длинная, мы уберем люстру из центра и сделаем два одинаковых светильника по 25 ватт.

Приняв КПД светодиодов за 25% (достаточно консервативная оценка — скорее всего, лучше, но уж точно не хуже), выясняем, что в каждом светильнике выделяется 18,75 Вт тепла. И наша задача — выбрать под это тепловыделение радиатор. Вот как мы это сделаем.

Будем исходить из максимальной температуры кристалла = 85°C и температуры окружающей среды = 35°C. То есть = 50°C.

Перепад температуры пропорционален рассеиваемой мощности, а коэффициент пропорциональности называется тепловым сопротивлением: , и измеряется оно в кельвинах (или градусах цельсия) на ватт. В нашем случае тепловое сопротивление кристалл-окружающая среда должно быть равно 2 °С/Вт.

Из чего же состоит тепловое сопротивление? Первый его компонент — это тепловое сопротивление, присущее самому корпусу светодиода. Фирма Cree не дает эту величину в даташите напрямую, предлагая воспользоваться странным графиком, но в ранних публикациях в журналах о выпуске новых светодиодных матриц указывалось значение 0,8 °С/Вт.

Второй компонент общей величины теплового сопротивления — это сопротивление, создаваемое слоем термопасты между корпусом и радиатором. В качестве термопасты мы возьмем старый-добрый Алсил-3, с теплопроводностью = 1,7-2 Вт/м*К. При слое пасты толщиной 50 мкм и площади теплорассеивающей поверхности 2,8 (площадь круга диаметром 19 мм под излучающей поверхностью матрицы) получаем = 0,105 °С/Вт.

Итак, на радиатор у нас остается 1,1 °С/Вт. Исходя из этой цифры, выбираем радиатор, накинув процентов 30 «на вранье», на растекание тепла от маленькой матрицы и на то, что радиатор будет неоптимально ориентирован в пространстве.

Например, нам подойдет профиль АВМ-076 размером сечения 176х40 мм с тепловым сопротивлением куска длиной 100 мм 0,5 °С/Вт. Нам хватит куска этого профиля длиной 80-100 мм. 100 мм — это стандартные куски, имеющиеся в продаже, 80 нужно заказывать у производителя (Виртуальная механика, virtumech.

ru), такой вариант выглядит несколько более эстетичным за счет меньшей ширины.

Осталось выбрать драйвер. Критерии для его выбора — это ток и рабочие пределы выходного напряжения. Мощность 25 Вт получается при токе около 0,7 А, напряжение на матрице при этом составит около 35-36 В.

Конструкция

Перебрав несколько вариантов конструкции светильника, я остановился на рассеивателе из матового полупрозрачного пластика, имеющем вид полуцилиндра. Форма эта получается простейшим способом — за счет крепления изогнутой пластины к боковым сторонам радиатора. Способ крепления достаточно произволен — на винтах с прижимными пластинами, на клею — я воспользовался красным двусторонним скотчем «Момент».

В качестве рассеивателя я применил рассеивающую пленку из подсветки разбитого ЖК монитора — она имеет очень хорошее светопропускание. Можно также заматировать абразивом пленку для печати на лазерном принтере или любую другую плотную пластиковую пленку. Матрица с предварительно припаянными проводами устанавливается с помощью комплектного фланца в центре радиатора с помощью двух винтов М3 (гайки использовать неудобно, так что придется поработать метчиком).

Перед приклеиванием рассеивателя свободную от матрицы плоскую поверхность радиатора рекомендуется оклеить алюминиевым скотчем или окрасить белой краской — это снизит потери света. По поводу термопасты — хотелось бы заметить, что использование темной термопасты не рекомендуется: она процентов на 10 снизит световой поток.

Я это хорошо заметил на двух экземплярах, один из которых я сделал с Алсилом-3, а на второй алсила не хватило и я воспользовался пастой из комплекта кулера фирмы Scythe, имевшей темно-серый цвет. Разница при измерении люксметром очевидна. Также нет смысла использовать более дорогие, чем алсил, термопасты с большей теплопроводностью: и на алсиле падает в худшем случае пара-тройка градусов, погоды они не сделают.

После сборки первого светильника (в котором я использовал радиатор от процессора Pentium II и который поселился в кухне, у него чуть меньшая мощность в районе 15 Вт), я принял решение ставить в светильники для комнаты не одну матрицу, а две — это «размазало» пятно света на рассеивателе и сделало свет более комфортным. Более разумно было бы в таком случае ставить менее мощные модули, скажем, CXA1820.

Модули соединил параллельно, нежелательных последствий в виде неравномерного распределения тока между ними это не вызвало — обе матрицы светятся на глаз одинаково. Но длину подводящих проводов я на всякий случай выровнял. Крепление к потолку у меня — с помощью коромысла из жесткой стальной проволоки диаметром 2 мм, концы которого продеты в отверстия в крайних ребрах радиатора и загнуты.

За центр коромысла зацеплен крючок, прикрепленный к потолку — такой длины, чтобы между натяжным потолком и радиатором оказалось расстояние в пару сантиметров. Драйвер спрятан за натяжным потолком. Если бы светильники делались до потолка, можно было бы в него запрятать и радиаторы. Поверхность радиатора можно покрасить в черный цвет перманентным маркером или тонким слоем из баллончика (толстым не надо — теплоизоляция). А можно и не красить, глаза он особо не мозолит.

Результаты

Светло. Под лампами на высоте столешницы — 450 лк, в середине комнаты 380 лк. Свет комфортный, цветопередача — вполне (правда, на кухне оказалось, что сырое мясо под этим светом выглядит, как-будто его слегка подкрасили черничным соком).

Радиаторы после многочасовой работы теплые, но не горячие. Мерцание равно нулю (заслуга качественных драйверов).

И по ценам: матрицы обошлись в 550 рублей каждая (курс с тех пор, конечно, поменялся), радиаторы — по 600 рублей, драйвера — по 250 рублей, пленка досталась бесплатно.

Итого — 2200+1200+500 = 3900 рублей. Плюс два-три часа работы.

Источник: https://habr.com/post/437420/

От чего зависит яркость свечения светодиода и как ее регулировать

Рядового потребителя при покупке осветительного прибора интересует не напряжение или ток, а яркость светодиода, так как она отличается от показателя других ламп. Внедрение новых технологий требует иного подхода к характеристикам светотехники.

  Основные параметры, в том числе яркость свечения, хорошие производители обозначают в маркировке, на упаковке, в технической документации.

Для правильного выбора необходимо знать значение букв и цифр, уметь определить, какой прибор допускает регулировку яркости, какой – нет.

Что такое яркость светодиода и в чем она измеряется

Яркостью свечения называют показатель света, равный соотношению силы светового потока к косинусу угла, под которым он излучается, и освещаемой площади.

Другое определение – освещенность в точке, перпендикулярной к источнику, к углу, в который заключен луч. Яркость свечения обозначается буквой «L», измеряется в милликанделах на метр в минус второй степени (кд*м-2).

У обычных светодиодов яркость 20-50 мкд, у сверхярких – до 20 000 мкд. От этого показателя зависит восприятие предметов глазами человека.

Если говорить о светодиодах, то у нихяркость свечения – это мощность (сила) света, измеряемая в ваттах и зависящаяот угла конуса, основание которого расположено на освещаемой площади, вершина –в источнике света. При равном излучении во всех направлениях яркость свечения будетсоотношением потока к пространственному углу (в градусах). Чаще всего градусыпереводятся в стерадианы: sr = 2 π (1 – cos θ/2), где θ – угол луча.

Параметры, влияющие на яркость

Насколько ярко будет отображаться освещаемый объект, зависит не только от светового потока. Яркость свечения зависит так же от плотности луча и чувствительности наблюдателя.

Сила тока

Во время работы сила тока на светодиодезависит от напряжения. При незначительном увеличении вольтажа электротокповышается многократно, вместе с ним и яркость свечения. Но этим параметромможно управлять, если включить в схему аналоговый или широко-импульсныймодулятор, обеспечивающий функцию диммирования. 

Зависимость яркости свечения идеального светодиода от электротока линейная. На практике зависит от потерь на выделении тепла и дифференциального сопротивления кристалла. Существует предел, после которого повышать ток нельзя из-за перегрева p-n-перехода, способного вывести LED из строя.

Технология

Светодиод – это источник света точечного типа, направленность луча определяет конструкция. Параметры меняются в зависимости от оптических свойств и наличия в приборе люминофора, рассеивателей и линз. Независимо от устройства интенсивность свечения регулируется минимальными изменениями тока.

У светодиода при высокой плотности луча(небольшом угле излучения) яркость свеяения увеличивается независимо от объемапотока.

Внимание! При покупке необходимо учитывать, что источник с тысячей милликандел и углом излучения 45 градусов будет давать такой же поток, как с углом 12 градусов, но при втором варианте луч будет ярче.

Площадь кристалла

Еще один показатель, от которогонапрямую зависит объем светового потока и яркость свечения – величинакристалла. Например, площадь СМД 3528 3,5х2,8 мм, площадь СМД 5630 – 5,6х3 мм,световой поток соответственно 6-8 и 50 люмен. Самые новые кристаллы отличаютсябольшими размерами и высокими показателями интенсивности свечения. Этообъясняется тем, что излучение в любом чипе зависит от величины р-n перехода.

Важно! При покупке необходимо знать, что неизвестные китайские производители это используют. Вместо больших кристаллов на 1 Вт они ставят маленькие на 0,75 или 0,5 Вт, при подаче заявленного тока их срок службы значительно сокращается или они перегорают.

Что можно узнать из маркировки

У именитых производителей маркировка достаточно длинная, поэтому размещается на упаковке или в технической документации. Ленты поставляются с маркировкой на катушке. Данные можно спросить у продавца, если их нельзя найти.

  Все о мощных светодиодах 3 W

Для обычных светодиодов не существует стандартных обозначений, каждый производитель использует свои. Яркость свечения всегда указывается в маркировке мощных ламп.

Источник: https://svetilnik.info/svetodiody/ot-chego-zavisit-yarkost-svecheniya-svetodioda.html

Как сделать светодиодную лампу своими руками

Благодаря своим многочисленным положительным качествам, надежности, практичности, светодиодные лампы практически с первых мгновений своего появления завоевали рынок.

Светильники со светодиодными источниками света имеют большой срок службы, не нагреваются при работе, потребляют минимальное количество энергии при высокой рассеиваемой мощности излучаемого светового потока. Особенность работы светодиодов связана с технологией изготовления p-n-перехода, выбора кристалла.

Современные технологии позволяют изготовить очень яркие светодиоды со световым потоком 4000 К, что намного больше, чем способны излучать даже экономичные люминесцентные лампы.

Выпускаются лампы с желтым или белым свечением, поэтому покупатели могут выбирать наиболее подходящие для своего помещения источники света. Желтые, имея температуру свечения 6000 К, создают теплое свечение, а белые с 4000 К – холодное.

Светодиодные лампы являются более выгодными по сравнению с лампами накаливания или «энергосберегающими», но из-за особенностей изготовления, своей конструктивной сложности они стоят дороже. Хотя, сравнивая конструкцию и технологичность люминесцентных источников света, можно сделать вывод, что производство светодиодных проще.

Светодиодный светильник 

Учитывая высокую цену на светодиодные лампы, многие хотят сделать ее своими руками, тем более для этого все необходимые детали можно приобрести на радиорынке. Чего не скажешь о ртутной лампе, в которой не только плата питания сложна, но и колба с газом является недоступным элементом. Поэтому, если хотите изготовить качественные светодиодные лампы для теплицы своими руками, то это можно сделать довольно просто.

Галерея: светодиодные лампы своими руками (25 фото)

Сфера применения

Преимущество светодиодных источников света заключается в универсальности. Производители выпускают различные по мощности излучения, форме и количеству элементов светодиодные матрицы или сами светодиоды. Поэтому можно конструировать светильники на свое усмотрение как на стандартный цоколь от разбитой лампы, так и на специализированный в соответствии с требованиями подключения к драйверу или плате управления.

Преимуществом светодиодных источников света является управляемость яркостью свечения путем изменения напряжения на его входе. Таким образом, можно получить оттенок от еле заметного до чрезмерно яркого. Это свойство дает возможность создавать много полезных вещей:

  • прожекторы;
  • уличные фонари;
  • ночные светильники;
  • индикаторы;
  • фитолампы или светодиодные лампы для растений своими руками;
  • подсветка торговых полок;
  • люстры.

Дачные строения на участке, подлежащие регистрации в 2019 году

Светодиоды получили применение во многих сферах благодаря своим практическим качествам. Они активно используются в промышленности, быту, медицине, детских дошкольных учреждениях.

Изготовление своими руками

Известно много различных форм светильников и систем подсветки, которые могут быть изготовлены своими руками в корпусе, а может быть использована готовая лента, что также весьма удобно. Например, при создании подсветки клавиатуры или полок в шкафу.

Что же потребуется для изготовления светильника на светодиодах? Долго размышлять не придется, потому что светодиодные источники света являются универсальными. Их можно подключать на переменное или постоянное напряжение любого номинала. Достаточно изготовить качественный драйвер или блок управления и грамотно расположить светодиоды на пластине.

Крепление и установка

Прежде чем приступать к изготовлению светодиодной лампы, стоит подумать над ее назначением. Если она будет устанавливаться в стандартный патрон, то для этого потребуется цоколь Е27, Е14, G9. Взять его можно с любой старой лампочки, например, от люминесцентной. Точно таким принципом руководствуются при освещении теплицы светодиодными лампами.

В зависимости от назначения светодиодные светильники также могут быть различными. Одни предназначены для общего освещения, для использования в качестве ночников или в качестве фитолампы для выращивания растений.

В первом случае для изготовления светильников используются яркие светодиоды холодного или теплого свечения, что наиболее предпочтительно.

С точки зрения влияния на зрение человека, лампы лучше покупать именно с желтым свечением, точно так же дело касается и выбора самих светодиодов.

А когда речь идет о ночнике или тусклой подсветки, то для его изготовления следует выбирать отличные от белого цвета или же использовать режимы свечения с низкой яркостью. Если же предстоит изготовить фитолампу для выращивания растений, то для этого лучше выбрать красный и синий цвета светового потока. Именно спектр этих оттенков оказывает благоприятное воздействие на рост и обеспечивает интенсивное развитие растений.

Как сделать фитолампу

Светодиодные лампы получили широкое применение, особенно часто их используют для выращивания растений в теплицах. Для этого применяется так называемая фитолампа. Ее особенность заключается в спектре света. Растения хорошо растут при красном, синем и желтом оттенках света.

Например, красный способствует лучшему фотосинтезу, синий стимулирует интенсивность роста на клеточном уровне, а желтый обогащает растение прочими немаловажными компонентами.

Поэтому светодиодные лампы своими руками станут идеальным вариантом, тем более, когда речь идет о выращивании растений.

Закваска капусты по лунным фазам: советы и рецепты

Но чтобы растение действительно интенсивно набирало рост в теплице, укреплялось и быстрее формировалось, необходимо выдерживать пропорцию количества красного света к синему в соотношении 1:3. И добавить чуточку желтого. Растение в таких условиях значительно крепче, выносливее и здоровее.

Поэтому если решите выращивать рассаду, то фитолампу можно изготовить своими руками. Для этого потребуется купить ленту или комбинировать красные и синие цвета светодиодов в светильниках для теплицы.

Такое освещение в теплице не потребует значительных материальных растрат, потому что цена материалов ниже, чем готовой фитолампы.

Благодаря возможности размещения источников освещения в любом удобном месте, можно сэкономить на электричестве. Например, ленту можно протянуть над самими растениями, исключая излишние растраты на освещение пространства всей теплицы.

Для изготовления лампы не потребуется покупать специальные светодиоды, для теплиц вполне подойдут рыночные или заказанные из интернет-магазина. В продаже имеются различные модели, важно, чтобы яркость была достаточной, а цвет соответствовал эффективному спектру.

Базовая конструкция

Когда речь идет об изготовлении своими руками светодиодного освещения для теплиц или для других определенных нужд, то тип конструкции выбирается исходя из особенностей его закрепления. Если предстоит устанавливать в стандартный навесной светильник с патроном на Е27, то, соответственно, лучше применить и стандартный цоколь.

Корпус лампочки можно изготовить из любого прозрачного материала. Но лучший эффект вы получите от непосредственного свечения без использования различных светофильтров. А ведь колбы и рассеиватели как раз таковыми и являются. Когда речь идет об изготовлении лампы для хозяйственных нужд, то красоту можно отложить на второй план.

Выбор источника питания

Светодиодные источники света являются универсальными. Их можно подключать на любое напряжение питания. Но только для осуществления этого потребуется изготовить необходимый драйвер или простейший блок питания, конструкцию устройства следует выбирать исходя из места обустройства освещения. В теплице практически всегда присутствует высокая влажность, поэтому блок питания должен быть герметичным.

На практике существует масса схем подключения светодиодов при изготовлении освещения теплицы своими руками с питанием как от сети постоянного напряжения 12В, так и к сети 220В с переменным током. Но на этом форматы питающих цепей не заканчиваются, потому что путем стандартных расчетов можно использовать любое напряжение.

Источник: https://1teplica.com/prochee/kak-sdelat-svetodiodnuyu-lampu-svoimi-rukami

Как сделать светодиод ярче

Светодиоды находят широкое применение практически во всех сферах жизни человека, особенно если он является счастливым обладателем собственного авто. С каждым днем все с большей активностью светодиоды вытесняют лампы накаливания.

Работают они достаточно просто, при пропускании тока через устройство, он излучает не когерентный свет. Отличаются от обычных ламп накаливания долговечностью, высоким КПД и низким потреблением тока. Применять их можно где угодно, зависит все от вашей фантазии.

В его корпусе расположен полупроводниковый кристалл, который светиться при прохождении через него тока.

Маломощные (0.07W)

Недолговечны, так как не имеют охлаждения. Они применяются в различных радио аппаратурах.

Мощные (1-3W)

Долговечны. При правильном использовании могут работать больше 10 лет. Практически не подвержены перегрузкам.

Светодиодные модули (0.7-0.9W)

Это алюминиевая пластина в которой находится несколько диодов. Её главное отличие — весьма недешевая стоимость

Светодиодные ленты

Маломощные светодиоды, которыми можно подсветить бардачок в машине или панель приборов, не более. Такие конфигурации, как правило, недолговечны.

Как сделать самим?

В данном видео, вам, покажут как сделать яркие светодиоды и установить их на авто.

Главное, нужно помнить, что светодиод – это не обычная лампа накаливания. При замене единицы устройства на лампу нужно быть очень внимательным, так как ваши неправильные действия с электрической частью автомобиля могут привести к весьма серьезным последствиям.

В отличие от обычных ламп накаливания, они потребляют на 80% меньше мощности, при этом имеют практически одинаковый световой поток. Благодаря этому снижается нагрузка на аккумулятор и генератор.

От правильного выбора напряжения будет зависеть яркость осветителя. Также у разных цветов, разное напряжение, например, у красного и желтого 2-2.5В, а у зеленых синих 3-3.8В. Для правильной работы диодов нужно проверять их работу на заглушенном двигателе и заведенном.

Если вы собираетесь заменить обычную лампочку на светодиод на приборной панели, то нужно использовать узконаправленные диоды, на конце они имеют увеличительную линзу. Также нужно обратить внимание на тип линз.

При правильной установке, он может проработать до 2500 часов при непрерывном использовании. Подключение их не трудоемкое занятие, так как на них отсутствует нить накаливания, поэтому это не займет много времени. И вам не нужно обладать знаниями работы в радиотехнике.

Еще один плюс светодиода в том, что вы можете устанавливать его в любом положении, в любом цвете и размере. Если вы просто включите диод в сеть автомобиля, то он просто перегорит.

Они подключаются к аккумулятору через девятивольтовый стабилизатор, который обеспечит последовательно-параллельное подключение. Ни в коем случае нельзя подключать напрямую, так как напряжение в сети автомобиля 12В, а у них в среднем 3-3.5В.

Подключение светодиодов

Из данного видео ролика, вы узнаете, как подключить светодиодную ленту на стоп-сигналы ВАЗ 2109. Смотрим!

  1. Самым легким способом подключить светодиод к вашему автомобилю считается применение кластера (светодиодная панель), которые рассчитаны на 12В. Вы просто подключаете к сети автомобиля и радуетесь как все это легко, и как красиво они горят.
    Но есть одно очень большое «но» — при увеличении оборотов двигателя яркость диодов будет изменяться. Хорошо кластеры будут работать только, если в вашем автомобиле 12,5 В, если меньше, то гореть они будут тускло;
  2. Второй способ немного сложнее. Здесь вам придется соединить между собой кластеры, то есть сделать последовательную цепь, подключение плюса первого светодиода к минусу второго, и сделать два вывода к питанию автомобиля. Но их нужно высчитать. Например, если они предназначены для 12-14 В, то нужно 3 светодиода, в итоге 3,5 Вольт каждый светодиод, их всего три, 3,5*3=10,5 Вольт. Подключать их пока не нужно. Включите в последовательную цепь гасящий резистор примерно 100-150 Ом. С мощностью 0,5 Вт. Найти вы их сможете в магазинах радиодеталей.

Но он имеет такой же недостаток, о котором говорилось ранее, при увеличении оборотов изменяется яркость осветительного прибора. Но если вы поставите больше трех диодов в цепи, то можете избежать этого недостатка.

Их нужно соединять параллельно, то есть соединить несколько цепочек (три диода, один резистор – одна цепочка), и здесь плюс нужно подключать к плюсу следующего светодиода, а минус соответственно к минусу.

При подключении одного светодиода нужен резистор на 550 Ом, при двух 300 Ом, при трех 150 Ом, если знаете закон Ома, то все должно быть понятно. Далее, вам понадобится мультиметр. Например, у вас есть светодиод 3.5В, с током 20 мА, и вы хотите подключить его к автомобилю. Нужно измерить мультиметром напряжение в том месте, где вы собираетесь установить его.

Так выглядят безцокольные светодиоды

На разных частях авто напряжение может быть разное. Допустим после измерения у вас 13 В. Далее отнимаем 13 В от 3,5 В (напряжение светодиода), получается 9,5 В. В формуле ток должен измеряться в амперах, 20 мА = 0,02 Ампер.

Теперь по формуле вычисляем сопротивление: 9,5В/0,02А = 475 Ом. Для предотвращения нагрева резистора, нужно определить его мощность. Для этого 9,5 В (напряжение, гасящее резистор) * 0,02 (ток, проходящий через него) = 0,19 Вт. Нужно взять с небольшим запасом, примерно 0,5-1 Вт.

Далее переключаем режим в мультиметре на измерение тока, для того чтобы в разрыве между светодиодом и резистором измерить ток в цепи. На мультиметре ставим на 10 А, подключаем плюс аккумулятора к плюсу прибора, минус прибора к плюсу светодиода. Мультиметр должен показать примерно 20 мА может быть меньше, так как на резисторах и светодиодах присутствует небольшой разброс параметров.

Чем больше тока будет поступать в осветительный прибор, тем ярче он будет светить. Но яркость сказывается на сроке службы светодиода, во избежание не устанавливайте ток выше 20 мА, оптимальное значение 18 мА.

Регулировка зазоров клапанов ВАЗ 2106. Как сделать всё правильно и что для этого нужно, вы сможете узнать на нашем сайте.

, о поклейке карбоновой плёнкой авто, находится в этой статье, так же здесь, находится очень интересный и полезный материал!

Источник: https://kekso.ru/avtovaz/kak-sdelat-svetodiod-jarche/

Делаем светодиод своими руками

Вопрос: «Можно ли сделать светодиод своими руками?» среди рядовых мастеров наверняка вызовет удивление. Казалось бы, зачем придумывать то, что давно придумано и серийно выпускается? Однако существует такая категория людей, которые обожают мастерить что-то необычные. Для них конструирование светодиода – это возможность повторить эксперименты О.В. Лосева, проводимые около ста лет назад, и шанс доказать себе и друзьям реальность создания светодиода в домашних условиях.

Что понадобится

Основной конструкционный материал – кусочек карбида кремния. В обычном магазине его не купишь, но если постараться, то можно найти в интернете среди частных объявлений. Кроме него понадобится иголка от булавки, соединительные провода, два мебельных гвоздя с широкой шляпкой и регулируемый источник напряжения (0-10 вольт). Также понадобится припой и немного умения пользоваться паяльником. Для измерений параметров самодельного светодиода подойдет простой мультиметр.

Подготовительная работа

Первым делом нужно найти участок на поверхности карбида кремния, способный к излучению света. Для этого исходный материал придётся раздробить на несколько кусочков размером 2-5 мм. Затем каждый из них поочередно кладут на металлическую пластинку, подключенную к плюсу источника питания напряжением около 10В. Вторым электродом выступает острый щуп или игла, присоединённая к минусу источника питания.

Затем исследуемый кусочек нужно прижать пинцетом к пластине, и острой иглой прощупать его верхнюю часть в поисках светящегося участка. Таким образом, отбирают кристалл с наибольшей яркостью. Стоит отметить, что карбид кремния может излучать свет в спектре от оранжевого до зелёного.

Изготовление светодиода

Для удобства монтажа лучше взять гвоздик длиной 10-15 мм с большой шляпкой и хорошо её залудить. Она послужит основанием и теплоотводом для кристалла. С помощью паяльника олово на шляпке доводят до жидкого состояния и пинцетом слегка утапливают подготовленный экземпляр карбида. Естественно, что излучающий участок должен быть направлен вверх. После затвердевания припоя нужно убедиться в надёжной фиксации кристалла.

Для изготовления отрицательного электрода понадобится острая часть булавки и одножильный медный провод. Как видно из фото, обе детали лудятся и надёжно спаиваются между собой. Затем на проволоке делают петлю для придания ей свойства пружины. Свободный конец провода запаивают на шляпку второго гвоздя. Оба гвоздика прикрепляют к монтажной плате на небольшом расстоянии друг от друга.

На заключительном этапе к ножкам гвоздей подводят питание соответствующей полярности. Замыкается электрическая цепь иголкой, которую фиксируют в точке кристалла с максимальным свечением.

Плавно наращивая напряжение питания, можно определить значение, при котором яркость перестаёт интенсивно нарастать. В результате проведенных измерений падение напряжения составило 9В, а прямой ток 25 мА.

При смене полярности карбид кремния перестаёт излучать свет, что частично объясняет его полупроводниковые свойства.

Не удивлюсь, если радиолюбители со стажем выскажут свой негатив в адрес получившейся необычной конструкции, напоминающей простейший светодиод. Однако иногда собирать подобные вещи самостоятельно – это интересно и даже полезно. Примером служат радиолюбительские кружки для школьников, в которых дети знакомятся со свойствами разных материалов, учатся паять и познают азы полупроводников.

Источник: https://ledjournal.info/master-class/svetodiody-svoimi-rukami.html

Светодиоды – как работает, полярность, расчет резистора

Светодиоды – одни из самых популярных электронных компонентов, использующиеся практически в любой схеме. Словосочетание “помигать светодиодами” часто используется для обозначений первой задачи при проверке жизнеспособности схемы. В этой статье мы узнаем, как работают светодиода, сделаем краткий обзор их видов, а также разберемся с такими практическими вопросами как определение полярности и расчет резистора.

Устройство светодиода

Светодиоды — полупроводниковые приборы с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Излучаемый светодиодом свет лежит в узком диапазоне спектра. Иными словами, его кристалл изначально излучает конкретный цвет (если речь идёт об СД видимого диапазона) — в отличие от лампы, излучающей более широкий спектр, где нужный цвет можно получить лишь применением внешнего светофильтра. Диапазон излучения светодиода во многом зависит от химического состава использованных полупроводников.

 

Светодиод состоит из нескольких частей: 

  • анод, по которому подается положительная полуволна на кристалл; 
  • катод, по которому подается отрицательная полуволна на кристалл; 
  • отражатель; 
  • кристалл полупроводника; 
  • рассеиватель.  

Эти элементы есть в любом светодиоде, вне зависимости от его модели.  

Светодиод является низковольтным прибором. Для индикаторных видов напряжение питания должно составлять 2-4 В при токе до 50 мА. Диоды для освещения потребляют такое же напряжение, но их ток выше – достигает 1 Ампер. В модуле суммарное напряжение диодов оказывается равным 12 или 24 В.  

Подключать светодиод нужно с соблюдением полярности, иначе он выйдет из строя.  

Цвета светодиодов

Светодиоды бывают разных цветов. Получить нужный оттенок можно несколькими способами.  

Первый – покрытие линзы люминофором. Таким способом можно получить практически любой цвет, но чаще всего эта технология используется для создания белых светодиодов.  

RGB технология. Оттенок получается за счет применения в одном кристалле трех светодиодов красного, зеленого и синего цветов. Меняется интенсивность каждого из них, и получается нужное свечение.  

Применение примесей и различных полупроводников. Подбираются материалы с нужной шириной запрещенной зоны, и из них делается кристалл светодиода.   

Принцип работы светодиодов

Любой светодиод имеет p-n-переход. Свечение возникает при рекомбинации электронов и дырок в электронно-дырочном переходе. P-n переход создается при соединении двух полупроводников разного типа электропроводности. Материал n-типа легируется электронами, p-типа – дырками.  

При подаче напряжения электроны и дырки в p-n-переходе начинают перемещаться и занимать места. Когда носители заряда подходят к электронно-дырочному переходу, электроны помещаются в материал p-типа. В результате перехода электронов с одного энергетического уровня на другой выделяются фотоны. 

Не всякий p-n переход может излучать свет. Для пропускания света нужно соблюсти два условия: 

  • ширина запрещенной зоны должна быть близка к энергии кванта света; 
  • полупроводниковый кристалл должен иметь минимум дефектов.  

Реализовать подобное в структуре с одним p-n-переходом не получится. По этой причине создаются многослойные структуры из нескольких полупроводников, которые называются гетероструктурами.  

Для создания светодиодов используются прямозонные проводники с разрешенным прямым оптическим переходом зона-зона. Наиболее распространенные материалы группы А3В5 (арсенид галлия, фосфид индия), А2В4 (теллурид кадмия, селенид цинка).  

Цвет светоизлучающего диода зависит от ширины запрещенной зоны, в которой происходит рекомбинация электронов и дырок. Чем больше ширина запрещенной зоны и выше энергия квантов, тем ближе к синему излучаемый свет. Путем изменения состава можно добиться свечения в широком оптическом диапазоне – от ультрафиолета до среднего инфракрасного излучения.  

Светодиоды инфракрасного, красного и желтого цветов изготавливаются на основе фосфида галлия, зеленый, синий и фиолетовый – на основе нитридов галлия.  

Виды светодиодов, классификация

По предназначению выделяют индикаторные и осветительные светодиоды. Первые используются для стилизации, декоративной подсветки – например, украшение зданий, рекламные баннеры, гирлянды.  Осветительные приборы используются для создания яркого освещения в помещении.  

По типу исполнения выделяют: 

  • Dip светодиоды. Они представляют собой кристаллы, заключенные в цилиндрическую линзу. Относятся к индикаторным светодиодам. Существуют монохромные и многоцветные устройства. Используются редко из-за своих недостатков: большой размер, малый угол свечения (до 120 градусов), падение яркости излучения при долгом функционировании на 70%, слабый поток света.Dip светодиоды
  • Spider led. Такие светодиоды похожи на предыдущие, но имеют 4 выхода. В таких диодах оптимизирован теплоотвод, повышается надежность компонентов. Активно используются в автомобильной технике.  
  • Smd – светодиоды для поверхностного монтажа. Могут относиться как к индикаторным, так и к осветительным светодиодам.Smd
  • Cob (Chip-On-Board) – кристалл установлен непосредственно на плате. К преимуществам такого решения относятся защита от окисления, малые габариты, эффективный отвод тепла и равномерное освещение по всей площади. Светодиоды такой марки являются самыми инновационными. Используются для освещения. На одной подложке может быть установлено более 9 светодиодов. Сверху светодиодная матрица покрывается люминофором. Активно используются в автомобильной индустрии для создания фар и поворотников, при разработке телевизоров и экранов компьютеров.  Cob
  • Волоконные – разработка 2015 года. Могут использоваться в производстве одежды. Волоконные
  • Filament также является инновационным продуктом. Отличаются высокой энергоэффективностью. Используются для создания осветительных ламп. Важное преимущество – возможность осуществления монтажа напрямую на подложку из стекла. Благодаря такому нанесению есть возможность распространения света на 360 градусов. Конструкция состоит из сапфирового стекла с диаметром до 1,5 мм и специально выращенных кристаллов, которые соединены последовательно. Число кристаллов обычно ограничивается 28 штуками. Светодиоды помещаются в колбу, которая покрыта люминофором. Иногда филаментные светодиоды могут относить к классу COB изделий.Filament
  • Oled. Органические тонкопленочные светодиоды. Используются для построения органических дисплеев. Состоят из анода, подложки из фольги или стекла, катода, полимерной прослойки, токопроводящего слоя из органических материалов. К преимуществам относятся малые габариты, равномерное освещение по всей площади, широкий угол свечения, низкая стоимость, длительный срок службы, низкое потребление электроэнергии. Oled
  • В отдельную группу выделяются светодиоды, излучающие в ультрафиолетовом и инфракрасном диапазонах. Они могут быть с выводами, так и в виде smd исполнения. Используются в пультах дистанционного управления, бактерицидных и кварцевых лампах, стерилизаторах для аквариумов.  

Светодиоды могут быть:

  • мигающими – используются для привлечения внимания;
  • многоцветными мигающими;
  • трехцветными – в одном корпусе есть несколько несвязанных между собой кристаллов, которые работают как по отдельности, так и все вместе;
  • RGB;
  • монохромными.

Светодиоды классифицируются по цветовой гамме. Для максимально точной идентификации цвета в документации прибора указывается его длина волны излучения.  

Белые светодиоды классифицируются по цветовой температуре. Они бывают теплых оттенков (2700 К), нейтральных (4200 К) и холодных (6000 К). 

По мощности выделяют светодиоды, потребляющие единицы мВт до десятков Вт. Напрямую от мощности зависит сила света.  

Полярность светодиодов

Полярность светодиодов

При неправильном включении светодиод может сломаться. Поэтому важно уметь определять полярность источника света.  Полярность – это способность пропускать электрический ток в одном направлении.  

Полярность моно определить несколькими способами: 

  • Визуально. Это самый простой способ. Для нахождения плюса и минуса у цилиндрического диода со стеклянной колбой нужно посмотреть внутрь. Площадь катода будет больше, чем площадь анода. Если посмотреть внутрь не получится, полярность определяется по контактам – длинная ножка соответствует положительному электроду. Светодиоды типа  SMD имеют метки, указывающие на полярность. Они называются скосом или ключом, который направлен на отрицательный электрод. На маленькие smd наносятся пиктограммы в виде треугольника, буквы Т или П. Угол или выступ указывают на направление тока – значит, этот вывод является минусом. Также некоторые светодиоды могут иметь метку, которая указывает на полярность. Это может быть точка, кольцевая полоска.  
  • При помощи подключения питания. Путем подачи малого напряжения можно проверить полярность светодиода. Для этого нужен источник тока (батарейка, аккумулятор), к контактом которого прикладывается светодиод, и токоограничивающий резистор, через который происходит подключение. Напряжение нужно повышать, и светодиод должен загореться при правильном включении.  
  • При помощи тестеров. Мультиметр позволяет проверить полярность тремя способами. Первый – в положении проверка сопротивления. Когда красный щуп касается анода, а черный катода, на дисплее должно загореться число , отличное от 1. В ином случае на экране будет светиться цифра 1. Второй способ – в положении прозвонка. Когда красный щуп коснется анода, светодиод загорится. В ином случае он не отреагирует. Третий способ – путем установки светодиода в гнездо для транзистора. Если в отверстие С (коллектор) будет помещен катод – светодиод загорится.  
  • По технической документации. Каждый светодиод имеет свою маркировку, по которой можно найти информацию о компоненте. Там же будет указана полярность электродов.  

Выбор способа определения полярности зависит от ситуации и наличия у пользователя нужного инструмента.  

Расчет сопротивления для светодиода

Диод имеет малое внутреннее сопротивление. При подключении его напрямую к блоку питания, элемент перегорит. Чтобы этого не случилось, светодиод подключается к цепи через токоограничивающий резистор. Расчет производится по закону Ома: R=(U-Uled)/I, где R – сопротивление токоограничивающего резистора, U – питание источника; Uled – паспортное значение напряжения для светодиода, I – сила тока. По полученному значению и подбирается мощность резистора.  

Важно правильно рассчитать напряжение. Оно зависит от схемы подключения элементов.  

Можно не производить расчет сопротивления, если использовать в цепи мощный переменный или подстроечный резистор. Токоограничивающие резисторы существуют разного класса точности. Есть изделия на 10%, 5% и 1 % – это значит, что погрешность варьируется в указанном диапазоне.  

Выбирая токоограничивающий резистор, нужно обратить внимание и на его мощность. почти всегда, если при малом рассеивании тепла устройство будет перегреваться и выйдет из строя. Это приведет к разрыву электрической цепи.  

Когда нужно использовать токоограничивающий резистор: 

  • когда вопрос эффективности схемы не является основным – например, индикация; 
  • лабораторные исследования. 

В остальных случаях лучше подключать светодиоды через стабилизатор – драйвер, что особенно это актуально в светодиодных лампах. 

Онлайн – сервисы и калькуляторы для расчета резистора:

Источник: https://ArduinoMaster.ru/datchiki-arduino/printsip-raboty-i-vidy-svetodiodov/

8 способов сделать так, чтобы LED-индикаторы бытовой техники не бесили

Индикаторы работы есть во многих бытовых приборах. И если днём они не мешают, то вечером превращаются в орудия пыток, которые пытаются ослепить своим ярким свечением.

Излучение зелёных и красных светодиодов обычно довольно мягкое, а вот голубые сильно бьют по глазам и освещают комнату не хуже ночника. К счастью, существует достаточно способов сделать их менее яркими или даже полностью нейтрализовать.

1. Уберите устройства из поля зрения

Самый простой способ — развернуть устройство к стене. Или убрать куда-нибудь подальше, где оно не будет попадаться на глаза. Можно просто поставить перед ним другой предмет, который как щит закроет от ненавистного свечения.

2. Отключите индикаторы в настройках

Функция есть не везде, но на сложной современной технике она, как правило, доступна. Например, так можно отключить светодиоды на передней панели роутера или ТВ-приставки.

3. Залепите светодиоды

Да, это первое, что приходит на ум. Способ не сложнее предыдущих, при этом более гибкий. Если правильно подобрать материал для заклеивания глазков индикаторов, можно приглушить или полностью скрыть их свечение.

Вариантов масса. Выбирать стоит исходя из желаемого результата и цвета корпуса техники:

  • Чёрная изолента полностью блокирует огни, синяя и белая приглушают, оставляя индикатор функциональным.
  • Малярная лента обеспечивает самый слабый эффект. При необходимости его легко усилить, добавив дополнительные слои.
  • Скотч можно закрасить маркером и достичь необходимой степени затемнения, а то и полностью скрыть индикатор.
  • Тонировочная плёнка для авто отлично приглушает свет, в то же время оставляя его различимым.

4. Используйте специальные стикеры

Более продвинутая вариация предыдущего метода для ленивых. Купите готовые стикеры различной формы и размера с эффектом затемнения вплоть до полного. Они не оставляют липких следов после отклеивания.

5. Закрасьте индикаторы лаком

Обычный лак для ногтей позволяет бороться с ослепляющими светодиодами не хуже всевозможных наклеек. Подберите цвет, наложите необходимое количество слоёв, и получите аккуратный тюнинг индикаторов с желаемым эффектом затемнения.

6. Зашлифуйте поверхность индикатора

Можно приглушить свечение индикаторов, сделав их поверхность матовой. Возьмите мелкую наждачную бумагу и аккуратно зашкурьте светодиод или его стёклышко. После этого свет станет рассеянным, а не направленным и не будет слепить.

7. Физически отключите светодиоды

Если гарантия на электронику давно закончилась, а вы умеете держать в руках отвёртку и не боитесь сломать устройство, можно полностью отключить индикаторы, разорвав цепи питания. Для этого достаточно перекусить одну из ножек светодиода или перерезать дорожку на плате.

8. Добавьте в цепь индикатора сопротивление

Вариант для тех, кто дружит с паяльником. Суть метода в том, чтобы снизить напряжение питания индикатора, тем самым уменьшив его яркость. Необходимо подобрать резистор с нужным номиналом и впаять его перед светодиодом.

Как сделать светодиодные мощные дневные ходовые огни (LED-ДХО)

как сделать светодиод ярче
 18 июль 2016  Лада.Онлайн    53 155     

В настоящее время вариантов реализации дневных ходовых огней из светодиодов огромное множество, но добиться яркого свечения и равномерного рассеивания света от диодов получается только при помощи нескольких способов. Расскажем простой метод изготовления сверхярких ДХО, используя легкодоступные материалы.

Потребуется

  1. Светодиоды. Лучше всего использовать текстолит, на который напаиваются светодиоды (например, SMD 3528). Более простой вариант — светодиодная лента с большим количеством светодиодов (не менее 120 светодиодов на 1 метр). См. каталог AliExpress.
  2. Светорассеиватель, который хорошо рассеивает свет (толщиной не менее 2 мм).

    Отлично подойдет органическое стекло (оргстекло или PLEXIGLAS) белого цвета, под названием «молочный акрил». Купить его можно в рекламных агентствах, занимающихся наружной рекламой.

  3. Светоотражающая окантовка (толщиной 10 мм).

    Подойдет кусок хромированного алюминия (например, от канистры с моторным маслом ZIC) или алюминий на самоклеящейся основе (типа скотча).

Как сделать светодиодные яркие ходовые огни

  1. Вырезаем светорассеиватель подходящей формы (это могут быть кольца или полукольца по типу ангельских глазок, загнутые или прямые линии), используя пилку по металлу или дремель.
  2. Обклеить внутренние и внешние стороны светорассеивателя светоотражателем. Если выбрали куски алюминия, то приклеиваем его клеем (например, эпоксидным).
  3. Вставляем в получившееся углубление светодиодную ленту или плату из текстолита со светодиодами.

Как установить LED-ДХО

Разбираем блок-фару (на примере XRAY, Priora или Granta/Kalina 2) и приклеиваем самодельные LED-ДХО к маске (внутренней подложке фары) при помощи клея (например, эпоксидного). Провода аккуратно укладываем и фиксируем, чтобы во время вибрации они не выскочили из своих посадочных мест.

Как подключить дневные ходовые огни

Если нужно, чтобы светодиодные ходовые огни включались вместо габаритов, то подключать их следует вместо габаритных огней. Если хотите правильно подключить ходовые огни, чтобы они удовлетворяли требования ГОСТ, тогда воспользуйтесь этой схемой. Не забывайте про стабилизатор напряжения для ходовых огней.

Стоит отметить, что такой тюнинг фар подойдет не только для всех автомобилей Лада (XRAY, Веста, Ларгус, Гранта, Калина, Приора или Нива 4х4), но может использоваться и на иномарках.

Получившиеся светодиодные ДХО, будут иметь равномерное и яркое свечение, которое не сравнить с ангельскими глазками, сделанных из трубок (оргстекло).

Напомним, более простой способ тюнинга фар — установить гибкие ДХО.

Источник: https://xn--80aal0a.xn--80asehdb/do-my-self/tuning/tuning-lada-vesta/1426-kak-sdelat-svetodiodnye-moschnye-dnevnye-hodovye-ogni-led-dho.html

Характеристики светодиодов для фонариков. Ремонт и увеличение мощности

как сделать светодиод ярче

Рассмотрим светодиодную продукцию, начиная от старых 5-мм, до сверхъярких мощных светодиодов мощность которых доходит до 10 Вт.

Чтобы выбрать «правильный» фонарик для своих нужд, нужно разобраться в том какие бывают светодиоды для фонариков и их характеристики.

Какие диоды используются в фонариках?

Мощные светодиодные фонари начались с устройств с матрицей 5-мм.

LED фонари в совершенно разных исполнениях, от карманных до кемпинговых, получили широчайшее распространение в середине 2000-х. Их цена заметно снизилась, а яркость и долгий срок службы от одного заряда батареек сыграли свою роль.

5-ти миллиметровые белые сверхъяркие светодиоды потребляют от 20 до 50 мА тока, при падении напряжения 3.2-3.4 вольта. Сила света – 800 мкд.

Очень хорошо показывают себя в миниатюрных фонариках-брелках. Маленький размер позволяет носить такой фонарик с собой. Питаются они либо от «мини-пальчиковых» батареек, либо от нескольких круглых «таблеток». Часто используются в зажигалках с фонариком.

Вот какие светодиоды в китайских фонариках устанавливаются уже много лет, но их век постепенно истекает.

В поисковых фонарях при большом размере отражателя есть возможность смонтировать десятки таких диодов, но такие решения постепенно отходят на второй план, а выбор покупателей падает в пользу на фонарей на мощных светодиодах типа Cree.

Поисковый фонарь на 5мм светодиодах

Такие фонари работают от батареек типа АА, ААА или аккумуляторов. Стоят недорого и проигрывают как в яркости, так и в качестве современным фонарям на более мощных кристаллах, но об этом ниже.

В дальнейшем развитии фонарей производители перебрали множество вариантов, но рынок качественной продукции занимают фонари с мощными матрицами или дискретными светодиодами.

Какие светодиоды используют в мощных фонариках?

Под мощными фонарями подразумеваются современные фонари различных типов начиная от тех, что размером с палец, заканчивая огромными поисковыми фонарями.

В такой продукции в 2017 году актуальна марка Cree. Это название американской компании. Её продукция считается одной из наиболее передовых в области светодиодной техники. Альтернативой являются LED от производителя Luminus.

Такие вещи значительно превосходят светодиоды с китайских фонариков.

Какие светодиоды Cree в фонариках устанавливаются наиболее часто?

Модели носят название состоящие из трёх четырёх символов, разделённых дефисом. Так диоды Cree XR-E, XR-G, XM-L, XP-E. Модели XP-E2, G2 чаще всего используются для небольших фонариков, а XM-L и L2 – очень универсальные.

Их используют, начиная от т.н. EDC фонарей (для повседневного ношения) – это маленькие фонари размером меньше ладони, до серьёзных поисковых фонарей большого размера.

Давайте рассмотрим характеристики мощных светодиодов для фонариков.

характеристика светодиодов для фонарей – это световой поток. От неё зависит яркость вашего фонаря и количество света, которое может дать источник. Разные светодиоды, потребляя одинаковое количество энергии, могут существенно отличаться по яркости.

Рассмотрим характеристики светодиодов в больших фонариках, прожекторного типа:

Продавцы часто указывают не полное название диода, его типа и характеристики, а сокращенную, несколько иную цифробуквенную маркировку:

  • Для XM-L: T5; T6; U2;
  • XP-G: R4; R5; S2;
  • XP-E: Q5; R2; R;
  • для XR-E: P4; Q3; Q5; R.

Фонарь может так и называться, «Фонарь EDC T6», информации в такой краткости более чем достаточно.

Ремонт фонариков

К сожалению цена таких фонариков довольно большая, как и самих диодов. И не всегда есть возможность приобрести новый фонарь, в случае поломки. Давайте разберемся как поменять светодиод в фонарике.

Для ремонта фонарика необходим минимальный набор инструментов:

  • Паяльник;
  • флюс;
  • припой;
  • отвёртка;
  • мультиметр.

Чтобы добраться до источника света нужно отвинтить головную часть фонаря, она обычно закреплена на резьбовом соединении.

В режиме проверки диодов или измерения сопротивления проверьте исправность светодиода. Для этого прикоснитесь щупами черным и красным к выводам светодиода, сначала в одном положении, а затем поменяйте местами красный и черный.

Если диод исправен – то в одном из положений будет низкое сопротивление, а в другом – высокое. Таким образом вы определяете, что диод исправен и проводит ток только в одном направлении. Во время проверки диод может излучать слабый свет.

В противном случае в обеих положениях будет короткое замыкание или высокое сопротивление (обрыв). Тогда нужна замена диода в фонаре.

Теперь нужно выпаять светодиод из фонаря и, соблюдая полярность, впаять новый. Будьте внимательны при выборе светодиода, учтите его потребление тока и напряжение, на которое тот рассчитан.

Если вы будете пренебрегать этими параметрами – в лучшем случае фонарик будет быстро садиться, в худшем – драйвер выйдет из строя.

Драйвер – это устройства для питания светодиода стабилизированным током от разных источников. Промышленно изготавливаются драйвера для питания от сети 220 вольт, от автомобильной электросети – 12-14.7 вольт, от Li-ion аккумуляторов, например, типоразмера 18650. Драйвером оборудовано большинство мощных фонарей.

Увеличиваем мощность фонаря

Если вас не устраивает яркость вашего фонаря или вы разобрались как заменить светодиод в фонарике и захотели его модернизировать, прежде чем покупать сверхмощные модели изучите основные принципы работы LED и ограничения в их эксплуатации.

Диодные матрицы не любят перегрева – это главный постулат! А замена светодиода в фонарике на более мощный может привести к такой ситуации. Обратите внимание на модели, в которые устанавливаются более мощные диоды и сравните со своей, если они подобны по размерам и конструктиву – меняйте.

Если ваш фонарь меньше — потребуется дополнительное охлаждение. Подробнее о изготовлении радиаторов своими руками мы писали здесь.

Если вы попытаетесь установить в миниатюрный фонарик-брелок такой гигант, как Сree MK-R, он у вас быстро выйдет из строя от перегрева и это будут зря потраченные средства. Незначительное повышение мощности (на пару ватт) допустимо без модернизации самого фонарика.

В остальном процесс замены марки светодиода в фонарике на более мощную – описан выше.

Фонари Police

Они зарекомендовали себя на протяжении многих лет и с каждой новой моделью этих фонарей спрос не утихает. Новинкой на отечественном рынке стала модель с электрошокером.

LED фонарик Police с шокером

Такие фонари ярко светят и могут выступать в роли средства самообороны. Однако и в них случаются проблемы со светодиодами.

Как заменить светодиод в фонарике Police

Широкий модельный ряд очень трудно охватить в рамках одной статьи, но можно дать общие рекомендации по ремонту.

  1. При ремонте фонаря с электрошокером будьте аккуратны, желательно используйте резиновые перчатки, чтобы избежать удара током.
  2. Фонари с пылевлагозащитой собраны на большом количестве винтов. Они отличаются по длине, поэтому делайте пометки откуда вы выкрутили тот или иной винт.
  3. Оптическая система фонарика Police позволяет регулировать диаметр светового пятна. При разборке на корпусе сделайте отметки в каком положении стояли детали перед снятием, иначе будет трудно поставить блок с линзой обратно.

Замена светодиода, блока преобразователя напряжения, драйвера, аккумулятора возможна с применением стандартного набора для пайки.

Какие светодиоды стоят в китайских фонариках?

Многие товары сейчас покупаются на aliexpress, где можно найти как оригинальную продукцию, так и китайские копии, которые не соответствуют заявленному описанию. Цена за такие приборы бывает сопоставимой с ценой на оригинал.

В фонарике, где заявлен светодиод Cree, его может на самом деле не быть, в лучшем случае будет стоять диод откровенно другого типа, в худшем такой, который внешне будет трудно отличим от оригинала.

Что это может за собой повлечь? Дешевые светодиоды выполняются в низкотехнологичных условиях и не выдают заявленной мощности. Имеют низкий КПД, от того у них усиленный нагрев корпуса и кристалла. Как уже было сказано, что перегрев – самый злой враг для Led приборов.

Так происходит потому, что при нагревании через полупроводник увеличивается ток, вследствие чего нагрев становится еще сильнее, мощности выделяется еще более, лавинообразно это приводит к пробою или обрыву светодиода.

Если постараться и потратить время на поиск информации, можно определить оригинальность продукции.

Сравните оригинал и подделку cree

LatticeBright – это китайский производитель светодиодов, который делает продукцию очень похожей на Cree, наверное это совпадение дизайнерской мысли (сарказм).

Сравнение китайской копии и оригинала Cree

На подложках эти клоны выглядят следующим образом. Можно заметить разнообразие форм подложек для светодиодов, производимое в китае.

Определение подделки по подложке для LED

Подделки изготавливаются довольно умело, многие продавцы не указывают об этом «бренде» в описании товара и о том, где произведены светодиоды для фонарей. Качество таких диодов не самое худшее среди китайского барахла, но и далеко от оригинала.

Установка светодиода вместо лампы накаливания

У многих в старых вещах пылятся коногонки или фонари на лампе накаливания и вы можете легко сделать его светодиодным. Для этого есть либо готовые решения, либо самодельные.

С помощью разбитой лампочки и светодиодов, если добавить немного смекалки и припоя, можно сделать отличную замену.

Железный бочонок в данном случае нужен для улучшения отвода тепла от LED. Далее нужно припаять все детали друг к другу и закрепить клеем.

При сборке будьте аккуратны – избегайте замыкания выводов, в этом поможет термоклей или термоусадочная трубка. Центральный контакт лампы нужно распаять – образуется отверстие. Продеть через него вывод резистора.

Дальше нужно припаять свободный вывод светодиода к цоколю, а резистора к центральному контакту. Для напряжения 12 вольт нужен резистор 500 Ом, а для напряжения в 5 В – 50-100 Ом, для питания от Li-ion 3.7В аккумулятора – 10-25Ом.

Как сделать из лампы накаливания светодиодную

Подобрать светодиод для фонарика гораздо сложнее чем его заменить. Нужно учитывать массу параметров: от яркости и угла рассеивания, до нагрева корпуса.

Кроме того, нельзя забывать об источнике питания для диодов. Если вы освоите все описанное выше – ваши приборы будут светить долго и качественно!

Оцените, пожалуйста, статью. Мы старались:) (18 4,78 из 5)

Источник: https://SvetodiodInfo.ru/texnicheskie-momenty/xarakteristiki-svetodiodov-dlya-fonarikov.html

Сверхяркие светодиоды: особенности монтажа, питания, конструкции

как сделать светодиод ярче

Осветительными приборами, где в качестве источников света используются сверхяркие светодиоды, уже никого не удивишь. Спрос на такие устройства неизменно растет, это напрямую связано с низким энергопотреблением этих приборов. Учитывая, что на освещение тратится около 25-35% потребляемой электроэнергии, экономия будет весьма ощутимой.

Различные виды сверхярких светодиодных источников освещения

Но учитывая относительно высокую стоимость сверхярких светодиодов, в силу их конструктивных особенностей, говорить о полном переходе на этот тип освещения еще не своевременно. По мнению специалистов, этот процесс займет от 5 до 10 лет, именно столько понадобится на отладку и внедрение новых технологий.

Кратко об эффективности

Эффективностью осветительного прибора принято считать соотношение вырабатываемого светового потока (измеряется в люменах) к потребляемой электроэнергии (ватт). Качественная лампа с нитью накала имеет эффективность около 16 люменов на ватт, флуоресцентная (энергосберегающая) — в четыре раза больше (64 лм/Вт), для длинных дневных ламп этот показатель в районе 80 лм/Вт.

КПД сверхярких светодиодов, выпускающихся массово на текущий момент, примерно такой же, как у ламп дневного света. Обратите внимание, что мы говорим именно про массовую продукцию. Что касается теоретического предела для сверхярких светодиодных источников, то он определен порогом в 320 лм/Вт.

Как обещают многие производители, в ближайшие несколько лет КПД можно будет повысить до уровня 213 лм/Вт.

Влияние особенностей конструкции на стоимость

Для изготовления сверхярких светодиодных источников света может применяться один из двух способов:

  • чтобы получить свет, близкий по спектру к белому, используются три кристалла установленных в одном корпусе. Один красный, второй синий и третий зеленый;
  • применяется кристалл, излучающий в голубом или ультрафиолетовом спектре, он подсвечивает линзу покрытую люминофором, в результате излучение преобразуется в свет, близкий по спектру к природному.

Не смотря на то, что первый вариант более эффективен, его реализация обходится несколько дороже, что отрицательно отражается на распространенности. Помимо этого спектр света, излучаемый таким источником, отличается от природного.

У приборов, изготовленных по второй технологии, меньше эффективность. Стоит также учитывать, что люминофор содержит в себе сложный по составу композит на основе церия и иттрия, которые сами по себе стоят недешево. Собственно, этим и объясняется относительно высокая стоимость сверхярких светодиодов белого света. Конструкция такого устройства показана на рисунке.

Устройство сверхяркого светодиода

Обозначения:

  • А – печатный проводник;
  • В – основание с повышенной теплопроводимостью;
  • C – защитный корпус устройства;
  • D – паста-припой;
  • E – кристалл светодиода, излучающий ультрафиолетовый или голубой свет;
  • F –люминофорное покрытие;
  • G – клей (может быть заменен эвтектическим сплавом);
  • H – провод, соединяющий кристалл и вывод;
  • K – отражатель;
  • J – теплоотводящее основание;
  • L – вывод питания;
  • M – диэлектрическая прослойка.

Особенности монтажа

На работу сверхярких светодиодов оказывает влияние степень нагрева кристалла и самого p-n перехода. От первого напрямую зависит срок эксплуатации устройства, от второго – уровень светового потока. Поэтому для длительной службы сверхярких светодиодов необходимо организовать надежный теплоотвод, делается это при помощи радиатора.

Следует принять во внимание, что теплопроводящие основания этих полупроводников, как правило, проводят электричество. Поэтому когда устанавливается несколько элементов на один радиатор,  следует позаботиться о надежной электроизоляции оснований.

Хороший теплоотвод значительно увеличивает срок службы сверхярких светодиодов

Остальные правила монтажа практически такие же, как у обычных диодов, то есть необходимо соблюдение полярности, как при установке самой детали, так и подключении питания.

Особенности питания

Учитывая относительно высокую стоимость сверхярких светодиодов, очень важно использовать для их работы надежные и качественные источники питания, поскольку эти полупроводниковые элементы критичны к токовой перегрузке.

После нештатного режима прибор может остаться работоспособным, но мощность излучаемого светового потока существенно сократится. Помимо этого такой элемент с большой вероятностью станет причиной поломки и других, совместно подключенных светодиодов.

Прежде, чем говорить о драйверах для сверхярких светодиодов, коротко расскажем об особенностях их питания. В первую очередь необходимо принять во внимание следующие факторы:

  • мощность светового потока, излучаемая этими элементами, напрямую зависит от величины протекающего через них электротока;
  • для сверхярких светодиодов характерна нелинейная ВАХ (вольт-амперная характеристика);
  • температура оказывает сильное влияние на ВАХ этих полупроводниковых приборов.

Ниже показано изменение ВАХ при температуре полупроводникового элемента (сверхяркий smd-светодиод) 20 °С и 70 °С.

Изменение характеристик от влияния температуры

Как видно из графика, при подаче на полупроводник стабильного напряжения величиной 2 В, электроток, проходящий через него, меняется в зависимости от температуры. При нагреве кристалла 20°С он будет равен 14 мА, когда температура повысится до 70°С, этот параметр будет соответствовать 35 мА.

Результатом такой разницы будет изменение мощности светового потока при одном и том же питающем напряжении. Исходя из этого, необходимо стабилизировать не напряжение, а электроток, проходящий через полупроводник.

Такие блоки питания называются светодиодными драйверами, они представляют собой обычные стабилизаторы тока. Это устройство можно приобрести готовое или собрать самостоятельно, в следующем разделе мы приведем несколько типичных схем драйверов.

Самодельный светодиодный драйвер

Предоставим вашему вниманию несколько вариантов драйверов на основе специализированных микросхем компании Monolithic Power System, использование которых существенно упрощает конструкцию. Схемы приводятся в качестве примера, полное описание типового включения можно найти в даташит на микросхемы.

Вариант первый на базе понижающего преобразователя МР4688.

Пример включения МР4688

Данный драйвер может работать с напряжениями от 4,5 до 80 В, порог максимального выходного электротока 2 А, что позволяет запитать светильник на сверхярких светодиодах большой мощности. Уровень электротока, проходящего через светодиоды, регулируется сопротивлением R . Реализация ШИМ-диммирования с частотой 20 кГц позволяет плавно изменять протекающий через светодиод электроток.

Второй вариант драйвера на базе микросхемы МР2489. Ее компактный корпус (QFN8 или TSOT23-5) делает возможным размещение драйвера в цоколе MR16, используемый галогенными лампами, что позволяет заменить последние светодиодными. Типовая схема подключения МР2489 показана на рисунке.

Драйвер на базе МР2489

Приведенная выше схема позволяет включать два параллельных светодиода, у каждого из которых рабочий ток 350 мА.

Последний вариант драйвера на базе микросхемы МР3412, который может быть использован в переносных фонариках. Отличительная особенность такой схемы – возможность работы от пальчикового элемента питания АА.

Драйвер для фонарика на базе МР3412

Источник: https://www.asutpp.ru/sverxyarkie-svetodiody.html

Хотите вечных светодиодов? Расчехляйте паяльники и напильники. Или домашнее освещение самодельщика

Когда-то давным давно, когда я еще учился в школе, а на дворе был конец перестройки, мой дядя (заронивший в меня интерес к электронике) припер домой сумку вынесенного через проходную завода добра. Собственно, такие сумки он приносил домой вполне регулярно, пополняя запасы, хранившиеся в диване. Диван этот, как вы догадываетесь, манил, и иногда в отсутствии дяди я в него заглядывал с восторгом.

Но кое-что из этой сумки в диван не попало, а попало в мои руки. Дядя мне вручил пачку — штук десять — макетных плат, и новенькую нераспечатанную коробку дефицитных, да и не дешевых в то время светодиодов. Причем светодиоды были не простые: вместо привычной маркировки АЛ-что-то там на коробке стоял код из четырех цифр, как я понял — они были экспериментальные. И они были яркие. По сравнению с привычными АЛ307 или АЛ310 — просто ослепительные.

И их к тому же было много — штук 50.

Идея «куда это богатство применить» возникла моментально: светодиоды были распаяны на одной из макетниц — сколько влезло (влезли не все), и из них вышел великолепный красный фонарь для печати фотографий, который абсолютно не засвечивал фотобумагу даже в упор. Правда, тут же я узнал о том, что «светодиоды не греются» — это вранье, так что ток пришлось снизить вдвое, с 10 мА на светодиод до 5. А еще через полгода успешной эксплуатации узнал и о том, что «светодиоды не перегорают» — это тоже неправда: первый светодиод в сборке погас, оказался пробит. А со временем и весь фонарь пришел в негодность. И вот сейчас я снова слышу из каждого утюга про «вечные» светодиодные лампочки, а дома за неполный год перехода на светодиодные лампы перегорела уже третья по счету.

Почему светодиодные лампочки не вечны?

Да потому что ничего нет вечного. Светодиод, к тому же — штука тонкая. Буквально. В его структуре имеются слои толщиной в считанные нанометры, образующие квантовые ямы.

Диффузия и электромиграция к таким слоям безжалостны — они размывают их, создают дефекты, постепенно снижая световыход и увеличивая вероятность катастрофы в масштабах крохотного кристалла, в котором, к слову, выделяется световая и тепловая энергия, удельное значение которой в расчете на кубический сантиметр p-n перехода можно сравнить разве что с ядерным взрывом (немного утрировано, но сами прикиньте плотность энерговыделения). Чем светодиод горячее, тем все эти негативные процессы будут идти быстрее. А он, как мы уже в курсе, греется. Греется даже тогда, когда через него идет ток в 10 миллиампер. А тем более — когда это мощный прибор, ток через который как минимум 100 мА, а бывает — и ампер, и даже три ампера. И в тепло, не смотря на всю энергетическую эффективность светодиодов, переходит значительная доля от подведенной к светодиоду электроэнергии. От двух третей до трех четвертей. А куда охлаждаться светодиодам в светодиодной лампочке? А некуда, по большому счету. Светодиод сам по себе спроектирован, чтобы его можно было охлаждать. Кристалл припаян к массивному основанию из меди или высокотеплопроводной керамики, у этого основания есть специальная площадка для пайки к внешнему теплоотводу, в роли которой — плата с алюминиевой или медной подложкой. А подложка эта, по идее, должна быть через термопасту прикручена к хорошему радиатору с большой площадью. А прикручена она в лучшем случае к металлическому корпусу светодиодной лампы, площадь которого совершенно недостаточна для рассеивания более чем нескольких ватт тепла, да еще и в закрытом плафоне. В худшем — корпус вообще пластмассовый, и в этот корпус еще попадает тепло от драйвера и от не вышедшего наружу и потерявшегося в недрах лампочки света. Вот и жарятся светодиоды при температуре, превышающей 100, а то и 130°С. И, кстати, не только светодиоды, но и драйвер, который тоже нередко выходит из строя.

Что делать-то?

Одно из трех. Либо мы, оставив на месте старую люстру, ставим в нее лампочки меньшей мощности. Они меньше будут греться и у них больше шансов прожить долго.

Разумеется, в комнате станет темно: мы вернемся во времена, когда в люстре из экономии и пожаробезопасности стояли лампочки по 25 ватт, от которых ушли, поставив на их место пятнадцативаттные энергосберегайки, сделавшие из темной берлоги светлое помещение, в котором приятно находиться. Либо мы покупаем новую люстру, в которую можно вкрутить больше лампочек.

Так мы останемся со светлой комнатой и получим (возможно) более долгую жизнь лампочек. Только на люстру, как и на лампочки, придется потратиться. И, наконец, третий вариант: мы забываем само понятие «светодиодная лампа», как страшный сон и ставим на место люстры специально спроектированный светодиодный светильник.

Продуманный и в плане хорошего использования светового потока (у светодиодных ламп типа «висит груша — нельзя скушать» с этим в приборах, рассчитанных на лампы накаливания, не всегда хорошо — они плоховато светят вбок и назад), и в плане качественного охлаждения.

Рынок

На рынке есть такие светильники. Но по большей части они во-первых, дорогие, а во вторых — страшные. Этакие промышленные штуковины, которые уместны в гараже, цеху, в торговом зале гипермаркета, в офисе, наконец — но не в квартире. Нет, есть и красивые, и дизайнерские очень эффектно выглядящие светильники. Но — во-первых, опять же, цена, а во-вторых, в жертву дизайну принесено охлаждение.

Так, классическая китайская светодиодная люстра-блин — это пятьдесят ватт светодиодов, сидящих на алюминиевой плате в виде кольца диаметром 45 см и шириной сантиметров 8. И — все. Никакого тебе корпуса с оребрением, ничего. И опять-таки, плата в почти наглухо закрытом корпусе. Ну хоть драйвер чуть наружу вынесен. Вердикт: жить будет, как светодиодная лампочка.

Только когда сдохнет, менять придется не лампочку за 150 рублей, а люстру за пять-десять тысяч. В общем, выход, кажется, один: умелые руки.

Самодельный светильник: проектирование

Сразу скажу: светильник будет не на светодиодной ленте и без блютуса. Для начала, оценим, сколько нам нужно света. Тут дело вкуса, но я люблю, когда в жилище светло. Всякий интимный полумрак я люблю в особых случаях, в романтичной обстановке, но в обычной жизни он навевает тоску. Считать можно по-всякому, но я воспользуюсь тем фактом, что с люстрой с пятью энергосберегайками по 15 ватт, дававшими каждая по 950 лм, в комнате было хорошо. То есть 5 килолюмен нам будет достаточно.

Теперь идем на сайт Cree, находим там Datasheet на модули CXA2530. Почему именно на них? Да потому что у меня есть несколько штук таких модулей, и с ними удобно работать: к ним просто припаиваются провода, а сами модули сажаются прямо на радиатор с помощью прилагающегося фланца. А еще их несложно купить — известный китайский интернет-магазин в помощь. У имеющихся у меня модулей бин светового потока Т4, это соответствует номинальному световому потоку 3440-3680 лм.

Сразу 20% от этой цифры отнимаем — они потеряются на рассеивателе. Получаем световой поток 2750-2950 лм, а учитывая, что получается этот поток при мощности около 30 Вт, получаем потребную для освещения мощность (подведенную к светодиодам) около 50 Вт. Поскольку комната у нас длинная, мы уберем люстру из центра и сделаем два одинаковых светильника по 25 ватт.

Приняв КПД светодиодов за 25% (достаточно консервативная оценка — скорее всего, лучше, но уж точно не хуже), выясняем, что в каждом светильнике выделяется 18,75 Вт тепла. И наша задача — выбрать под это тепловыделение радиатор. Вот как мы это сделаем.

Будем исходить из максимальной температуры кристалла = 85°C и температуры окружающей среды = 35°C. То есть = 50°C.

Перепад температуры пропорционален рассеиваемой мощности, а коэффициент пропорциональности называется тепловым сопротивлением: , и измеряется оно в кельвинах (или градусах цельсия) на ватт. В нашем случае тепловое сопротивление кристалл-окружающая среда должно быть равно 2 °С/Вт.

Из чего же состоит тепловое сопротивление? Первый его компонент — это тепловое сопротивление, присущее самому корпусу светодиода. Фирма Cree не дает эту величину в даташите напрямую, предлагая воспользоваться странным графиком, но в ранних публикациях в журналах о выпуске новых светодиодных матриц указывалось значение 0,8 °С/Вт.

Второй компонент общей величины теплового сопротивления — это сопротивление, создаваемое слоем термопасты между корпусом и радиатором. В качестве термопасты мы возьмем старый-добрый Алсил-3, с теплопроводностью = 1,7-2 Вт/м*К. При слое пасты толщиной 50 мкм и площади теплорассеивающей поверхности 2,8 (площадь круга диаметром 19 мм под излучающей поверхностью матрицы) получаем = 0,105 °С/Вт.

Итак, на радиатор у нас остается 1,1 °С/Вт. Исходя из этой цифры, выбираем радиатор, накинув процентов 30 «на вранье», на растекание тепла от маленькой матрицы и на то, что радиатор будет неоптимально ориентирован в пространстве.

Например, нам подойдет профиль АВМ-076 размером сечения 176х40 мм с тепловым сопротивлением куска длиной 100 мм 0,5 °С/Вт. Нам хватит куска этого профиля длиной 80-100 мм. 100 мм — это стандартные куски, имеющиеся в продаже, 80 нужно заказывать у производителя (Виртуальная механика, virtumech.

ru), такой вариант выглядит несколько более эстетичным за счет меньшей ширины.

Осталось выбрать драйвер. Критерии для его выбора — это ток и рабочие пределы выходного напряжения. Мощность 25 Вт получается при токе около 0,7 А, напряжение на матрице при этом составит около 35-36 В.

Конструкция

Перебрав несколько вариантов конструкции светильника, я остановился на рассеивателе из матового полупрозрачного пластика, имеющем вид полуцилиндра. Форма эта получается простейшим способом — за счет крепления изогнутой пластины к боковым сторонам радиатора. Способ крепления достаточно произволен — на винтах с прижимными пластинами, на клею — я воспользовался красным двусторонним скотчем «Момент».

В качестве рассеивателя я применил рассеивающую пленку из подсветки разбитого ЖК монитора — она имеет очень хорошее светопропускание. Можно также заматировать абразивом пленку для печати на лазерном принтере или любую другую плотную пластиковую пленку. Матрица с предварительно припаянными проводами устанавливается с помощью комплектного фланца в центре радиатора с помощью двух винтов М3 (гайки использовать неудобно, так что придется поработать метчиком).

Перед приклеиванием рассеивателя свободную от матрицы плоскую поверхность радиатора рекомендуется оклеить алюминиевым скотчем или окрасить белой краской — это снизит потери света. По поводу термопасты — хотелось бы заметить, что использование темной термопасты не рекомендуется: она процентов на 10 снизит световой поток.

Я это хорошо заметил на двух экземплярах, один из которых я сделал с Алсилом-3, а на второй алсила не хватило и я воспользовался пастой из комплекта кулера фирмы Scythe, имевшей темно-серый цвет. Разница при измерении люксметром очевидна. Также нет смысла использовать более дорогие, чем алсил, термопасты с большей теплопроводностью: и на алсиле падает в худшем случае пара-тройка градусов, погоды они не сделают.

После сборки первого светильника (в котором я использовал радиатор от процессора Pentium II и который поселился в кухне, у него чуть меньшая мощность в районе 15 Вт), я принял решение ставить в светильники для комнаты не одну матрицу, а две — это «размазало» пятно света на рассеивателе и сделало свет более комфортным. Более разумно было бы в таком случае ставить менее мощные модули, скажем, CXA1820.

Модули соединил параллельно, нежелательных последствий в виде неравномерного распределения тока между ними это не вызвало — обе матрицы светятся на глаз одинаково. Но длину подводящих проводов я на всякий случай выровнял. Крепление к потолку у меня — с помощью коромысла из жесткой стальной проволоки диаметром 2 мм, концы которого продеты в отверстия в крайних ребрах радиатора и загнуты.

За центр коромысла зацеплен крючок, прикрепленный к потолку — такой длины, чтобы между натяжным потолком и радиатором оказалось расстояние в пару сантиметров. Драйвер спрятан за натяжным потолком. Если бы светильники делались до потолка, можно было бы в него запрятать и радиаторы. Поверхность радиатора можно покрасить в черный цвет перманентным маркером или тонким слоем из баллончика (толстым не надо — теплоизоляция). А можно и не красить, глаза он особо не мозолит.

Результаты

Светло. Под лампами на высоте столешницы — 450 лк, в середине комнаты 380 лк. Свет комфортный, цветопередача — вполне (правда, на кухне оказалось, что сырое мясо под этим светом выглядит, как-будто его слегка подкрасили черничным соком).

Радиаторы после многочасовой работы теплые, но не горячие. Мерцание равно нулю (заслуга качественных драйверов).

И по ценам: матрицы обошлись в 550 рублей каждая (курс с тех пор, конечно, поменялся), радиаторы — по 600 рублей, драйвера — по 250 рублей, пленка досталась бесплатно.

Итого — 2200+1200+500 = 3900 рублей. Плюс два-три часа работы.

Источник: https://habr.com/post/437420/

От чего зависит яркость свечения светодиода и как ее регулировать

Рядового потребителя при покупке осветительного прибора интересует не напряжение или ток, а яркость светодиода, так как она отличается от показателя других ламп. Внедрение новых технологий требует иного подхода к характеристикам светотехники.

  Основные параметры, в том числе яркость свечения, хорошие производители обозначают в маркировке, на упаковке, в технической документации.

Для правильного выбора необходимо знать значение букв и цифр, уметь определить, какой прибор допускает регулировку яркости, какой – нет.

Что такое яркость светодиода и в чем она измеряется

Яркостью свечения называют показатель света, равный соотношению силы светового потока к косинусу угла, под которым он излучается, и освещаемой площади.

Другое определение – освещенность в точке, перпендикулярной к источнику, к углу, в который заключен луч. Яркость свечения обозначается буквой «L», измеряется в милликанделах на метр в минус второй степени (кд*м-2).

У обычных светодиодов яркость 20-50 мкд, у сверхярких – до 20 000 мкд. От этого показателя зависит восприятие предметов глазами человека.

Если говорить о светодиодах, то у нихяркость свечения – это мощность (сила) света, измеряемая в ваттах и зависящаяот угла конуса, основание которого расположено на освещаемой площади, вершина –в источнике света. При равном излучении во всех направлениях яркость свечения будетсоотношением потока к пространственному углу (в градусах). Чаще всего градусыпереводятся в стерадианы: sr = 2 π (1 – cos θ/2), где θ – угол луча.

Параметры, влияющие на яркость

Насколько ярко будет отображаться освещаемый объект, зависит не только от светового потока. Яркость свечения зависит так же от плотности луча и чувствительности наблюдателя.

Сила тока

Во время работы сила тока на светодиодезависит от напряжения. При незначительном увеличении вольтажа электротокповышается многократно, вместе с ним и яркость свечения. Но этим параметромможно управлять, если включить в схему аналоговый или широко-импульсныймодулятор, обеспечивающий функцию диммирования. 

Зависимость яркости свечения идеального светодиода от электротока линейная. На практике зависит от потерь на выделении тепла и дифференциального сопротивления кристалла. Существует предел, после которого повышать ток нельзя из-за перегрева p-n-перехода, способного вывести LED из строя.

Технология

Светодиод – это источник света точечного типа, направленность луча определяет конструкция. Параметры меняются в зависимости от оптических свойств и наличия в приборе люминофора, рассеивателей и линз. Независимо от устройства интенсивность свечения регулируется минимальными изменениями тока.

У светодиода при высокой плотности луча(небольшом угле излучения) яркость свеяения увеличивается независимо от объемапотока.

Внимание! При покупке необходимо учитывать, что источник с тысячей милликандел и углом излучения 45 градусов будет давать такой же поток, как с углом 12 градусов, но при втором варианте луч будет ярче.

Площадь кристалла

Еще один показатель, от которогонапрямую зависит объем светового потока и яркость свечения – величинакристалла. Например, площадь СМД 3528 3,5х2,8 мм, площадь СМД 5630 – 5,6х3 мм,световой поток соответственно 6-8 и 50 люмен. Самые новые кристаллы отличаютсябольшими размерами и высокими показателями интенсивности свечения. Этообъясняется тем, что излучение в любом чипе зависит от величины р-n перехода.

Важно! При покупке необходимо знать, что неизвестные китайские производители это используют. Вместо больших кристаллов на 1 Вт они ставят маленькие на 0,75 или 0,5 Вт, при подаче заявленного тока их срок службы значительно сокращается или они перегорают.

Что можно узнать из маркировки

У именитых производителей маркировка достаточно длинная, поэтому размещается на упаковке или в технической документации. Ленты поставляются с маркировкой на катушке. Данные можно спросить у продавца, если их нельзя найти.

  Все о мощных светодиодах 3 W

Для обычных светодиодов не существует стандартных обозначений, каждый производитель использует свои. Яркость свечения всегда указывается в маркировке мощных ламп.

Источник: https://svetilnik.info/svetodiody/ot-chego-zavisit-yarkost-svecheniya-svetodioda.html

Как сделать светодиодную лампу своими руками

Благодаря своим многочисленным положительным качествам, надежности, практичности, светодиодные лампы практически с первых мгновений своего появления завоевали рынок.

Светильники со светодиодными источниками света имеют большой срок службы, не нагреваются при работе, потребляют минимальное количество энергии при высокой рассеиваемой мощности излучаемого светового потока. Особенность работы светодиодов связана с технологией изготовления p-n-перехода, выбора кристалла.

Современные технологии позволяют изготовить очень яркие светодиоды со световым потоком 4000 К, что намного больше, чем способны излучать даже экономичные люминесцентные лампы.

Выпускаются лампы с желтым или белым свечением, поэтому покупатели могут выбирать наиболее подходящие для своего помещения источники света. Желтые, имея температуру свечения 6000 К, создают теплое свечение, а белые с 4000 К – холодное.

Светодиодные лампы являются более выгодными по сравнению с лампами накаливания или «энергосберегающими», но из-за особенностей изготовления, своей конструктивной сложности они стоят дороже. Хотя, сравнивая конструкцию и технологичность люминесцентных источников света, можно сделать вывод, что производство светодиодных проще.

Светодиодный светильник 

Учитывая высокую цену на светодиодные лампы, многие хотят сделать ее своими руками, тем более для этого все необходимые детали можно приобрести на радиорынке. Чего не скажешь о ртутной лампе, в которой не только плата питания сложна, но и колба с газом является недоступным элементом. Поэтому, если хотите изготовить качественные светодиодные лампы для теплицы своими руками, то это можно сделать довольно просто.

Галерея: светодиодные лампы своими руками (25 фото)

Сфера применения

Преимущество светодиодных источников света заключается в универсальности. Производители выпускают различные по мощности излучения, форме и количеству элементов светодиодные матрицы или сами светодиоды. Поэтому можно конструировать светильники на свое усмотрение как на стандартный цоколь от разбитой лампы, так и на специализированный в соответствии с требованиями подключения к драйверу или плате управления.

Преимуществом светодиодных источников света является управляемость яркостью свечения путем изменения напряжения на его входе. Таким образом, можно получить оттенок от еле заметного до чрезмерно яркого. Это свойство дает возможность создавать много полезных вещей:

  • прожекторы;
  • уличные фонари;
  • ночные светильники;
  • индикаторы;
  • фитолампы или светодиодные лампы для растений своими руками;
  • подсветка торговых полок;
  • люстры.

Дачные строения на участке, подлежащие регистрации в 2019 году

Светодиоды получили применение во многих сферах благодаря своим практическим качествам. Они активно используются в промышленности, быту, медицине, детских дошкольных учреждениях.

Изготовление своими руками

Известно много различных форм светильников и систем подсветки, которые могут быть изготовлены своими руками в корпусе, а может быть использована готовая лента, что также весьма удобно. Например, при создании подсветки клавиатуры или полок в шкафу.

Что же потребуется для изготовления светильника на светодиодах? Долго размышлять не придется, потому что светодиодные источники света являются универсальными. Их можно подключать на переменное или постоянное напряжение любого номинала. Достаточно изготовить качественный драйвер или блок управления и грамотно расположить светодиоды на пластине.

Крепление и установка

Прежде чем приступать к изготовлению светодиодной лампы, стоит подумать над ее назначением. Если она будет устанавливаться в стандартный патрон, то для этого потребуется цоколь Е27, Е14, G9. Взять его можно с любой старой лампочки, например, от люминесцентной. Точно таким принципом руководствуются при освещении теплицы светодиодными лампами.

В зависимости от назначения светодиодные светильники также могут быть различными. Одни предназначены для общего освещения, для использования в качестве ночников или в качестве фитолампы для выращивания растений.

В первом случае для изготовления светильников используются яркие светодиоды холодного или теплого свечения, что наиболее предпочтительно.

С точки зрения влияния на зрение человека, лампы лучше покупать именно с желтым свечением, точно так же дело касается и выбора самих светодиодов.

А когда речь идет о ночнике или тусклой подсветки, то для его изготовления следует выбирать отличные от белого цвета или же использовать режимы свечения с низкой яркостью. Если же предстоит изготовить фитолампу для выращивания растений, то для этого лучше выбрать красный и синий цвета светового потока. Именно спектр этих оттенков оказывает благоприятное воздействие на рост и обеспечивает интенсивное развитие растений.

Как сделать фитолампу

Светодиодные лампы получили широкое применение, особенно часто их используют для выращивания растений в теплицах. Для этого применяется так называемая фитолампа. Ее особенность заключается в спектре света. Растения хорошо растут при красном, синем и желтом оттенках света.

Например, красный способствует лучшему фотосинтезу, синий стимулирует интенсивность роста на клеточном уровне, а желтый обогащает растение прочими немаловажными компонентами.

Поэтому светодиодные лампы своими руками станут идеальным вариантом, тем более, когда речь идет о выращивании растений.

Закваска капусты по лунным фазам: советы и рецепты

Но чтобы растение действительно интенсивно набирало рост в теплице, укреплялось и быстрее формировалось, необходимо выдерживать пропорцию количества красного света к синему в соотношении 1:3. И добавить чуточку желтого. Растение в таких условиях значительно крепче, выносливее и здоровее.

Поэтому если решите выращивать рассаду, то фитолампу можно изготовить своими руками. Для этого потребуется купить ленту или комбинировать красные и синие цвета светодиодов в светильниках для теплицы.

Такое освещение в теплице не потребует значительных материальных растрат, потому что цена материалов ниже, чем готовой фитолампы.

Благодаря возможности размещения источников освещения в любом удобном месте, можно сэкономить на электричестве. Например, ленту можно протянуть над самими растениями, исключая излишние растраты на освещение пространства всей теплицы.

Для изготовления лампы не потребуется покупать специальные светодиоды, для теплиц вполне подойдут рыночные или заказанные из интернет-магазина. В продаже имеются различные модели, важно, чтобы яркость была достаточной, а цвет соответствовал эффективному спектру.

Базовая конструкция

Когда речь идет об изготовлении своими руками светодиодного освещения для теплиц или для других определенных нужд, то тип конструкции выбирается исходя из особенностей его закрепления. Если предстоит устанавливать в стандартный навесной светильник с патроном на Е27, то, соответственно, лучше применить и стандартный цоколь.

Корпус лампочки можно изготовить из любого прозрачного материала. Но лучший эффект вы получите от непосредственного свечения без использования различных светофильтров. А ведь колбы и рассеиватели как раз таковыми и являются. Когда речь идет об изготовлении лампы для хозяйственных нужд, то красоту можно отложить на второй план.

Выбор источника питания

Светодиодные источники света являются универсальными. Их можно подключать на любое напряжение питания. Но только для осуществления этого потребуется изготовить необходимый драйвер или простейший блок питания, конструкцию устройства следует выбирать исходя из места обустройства освещения. В теплице практически всегда присутствует высокая влажность, поэтому блок питания должен быть герметичным.

На практике существует масса схем подключения светодиодов при изготовлении освещения теплицы своими руками с питанием как от сети постоянного напряжения 12В, так и к сети 220В с переменным током. Но на этом форматы питающих цепей не заканчиваются, потому что путем стандартных расчетов можно использовать любое напряжение.

Источник: https://1teplica.com/prochee/kak-sdelat-svetodiodnuyu-lampu-svoimi-rukami

Как сделать светодиод ярче

Светодиоды находят широкое применение практически во всех сферах жизни человека, особенно если он является счастливым обладателем собственного авто. С каждым днем все с большей активностью светодиоды вытесняют лампы накаливания.

Работают они достаточно просто, при пропускании тока через устройство, он излучает не когерентный свет. Отличаются от обычных ламп накаливания долговечностью, высоким КПД и низким потреблением тока. Применять их можно где угодно, зависит все от вашей фантазии.

В его корпусе расположен полупроводниковый кристалл, который светиться при прохождении через него тока.

Маломощные (0.07W)

Недолговечны, так как не имеют охлаждения. Они применяются в различных радио аппаратурах.

Мощные (1-3W)

Долговечны. При правильном использовании могут работать больше 10 лет. Практически не подвержены перегрузкам.

Светодиодные модули (0.7-0.9W)

Это алюминиевая пластина в которой находится несколько диодов. Её главное отличие — весьма недешевая стоимость

Светодиодные ленты

Маломощные светодиоды, которыми можно подсветить бардачок в машине или панель приборов, не более. Такие конфигурации, как правило, недолговечны.

Как сделать самим?

В данном видео, вам, покажут как сделать яркие светодиоды и установить их на авто.

Главное, нужно помнить, что светодиод – это не обычная лампа накаливания. При замене единицы устройства на лампу нужно быть очень внимательным, так как ваши неправильные действия с электрической частью автомобиля могут привести к весьма серьезным последствиям.

В отличие от обычных ламп накаливания, они потребляют на 80% меньше мощности, при этом имеют практически одинаковый световой поток. Благодаря этому снижается нагрузка на аккумулятор и генератор.

От правильного выбора напряжения будет зависеть яркость осветителя. Также у разных цветов, разное напряжение, например, у красного и желтого 2-2.5В, а у зеленых синих 3-3.8В. Для правильной работы диодов нужно проверять их работу на заглушенном двигателе и заведенном.

Если вы собираетесь заменить обычную лампочку на светодиод на приборной панели, то нужно использовать узконаправленные диоды, на конце они имеют увеличительную линзу. Также нужно обратить внимание на тип линз.

При правильной установке, он может проработать до 2500 часов при непрерывном использовании. Подключение их не трудоемкое занятие, так как на них отсутствует нить накаливания, поэтому это не займет много времени. И вам не нужно обладать знаниями работы в радиотехнике.

Еще один плюс светодиода в том, что вы можете устанавливать его в любом положении, в любом цвете и размере. Если вы просто включите диод в сеть автомобиля, то он просто перегорит.

Они подключаются к аккумулятору через девятивольтовый стабилизатор, который обеспечит последовательно-параллельное подключение. Ни в коем случае нельзя подключать напрямую, так как напряжение в сети автомобиля 12В, а у них в среднем 3-3.5В.

Подключение светодиодов

Из данного видео ролика, вы узнаете, как подключить светодиодную ленту на стоп-сигналы ВАЗ 2109. Смотрим!

  1. Самым легким способом подключить светодиод к вашему автомобилю считается применение кластера (светодиодная панель), которые рассчитаны на 12В. Вы просто подключаете к сети автомобиля и радуетесь как все это легко, и как красиво они горят.
    Но есть одно очень большое «но» — при увеличении оборотов двигателя яркость диодов будет изменяться. Хорошо кластеры будут работать только, если в вашем автомобиле 12,5 В, если меньше, то гореть они будут тускло;
  2. Второй способ немного сложнее. Здесь вам придется соединить между собой кластеры, то есть сделать последовательную цепь, подключение плюса первого светодиода к минусу второго, и сделать два вывода к питанию автомобиля. Но их нужно высчитать. Например, если они предназначены для 12-14 В, то нужно 3 светодиода, в итоге 3,5 Вольт каждый светодиод, их всего три, 3,5*3=10,5 Вольт. Подключать их пока не нужно. Включите в последовательную цепь гасящий резистор примерно 100-150 Ом. С мощностью 0,5 Вт. Найти вы их сможете в магазинах радиодеталей.

Но он имеет такой же недостаток, о котором говорилось ранее, при увеличении оборотов изменяется яркость осветительного прибора. Но если вы поставите больше трех диодов в цепи, то можете избежать этого недостатка.

Их нужно соединять параллельно, то есть соединить несколько цепочек (три диода, один резистор – одна цепочка), и здесь плюс нужно подключать к плюсу следующего светодиода, а минус соответственно к минусу.

При подключении одного светодиода нужен резистор на 550 Ом, при двух 300 Ом, при трех 150 Ом, если знаете закон Ома, то все должно быть понятно. Далее, вам понадобится мультиметр. Например, у вас есть светодиод 3.5В, с током 20 мА, и вы хотите подключить его к автомобилю. Нужно измерить мультиметром напряжение в том месте, где вы собираетесь установить его.

Так выглядят безцокольные светодиоды

На разных частях авто напряжение может быть разное. Допустим после измерения у вас 13 В. Далее отнимаем 13 В от 3,5 В (напряжение светодиода), получается 9,5 В. В формуле ток должен измеряться в амперах, 20 мА = 0,02 Ампер.

Теперь по формуле вычисляем сопротивление: 9,5В/0,02А = 475 Ом. Для предотвращения нагрева резистора, нужно определить его мощность. Для этого 9,5 В (напряжение, гасящее резистор) * 0,02 (ток, проходящий через него) = 0,19 Вт. Нужно взять с небольшим запасом, примерно 0,5-1 Вт.

Далее переключаем режим в мультиметре на измерение тока, для того чтобы в разрыве между светодиодом и резистором измерить ток в цепи. На мультиметре ставим на 10 А, подключаем плюс аккумулятора к плюсу прибора, минус прибора к плюсу светодиода. Мультиметр должен показать примерно 20 мА может быть меньше, так как на резисторах и светодиодах присутствует небольшой разброс параметров.

Чем больше тока будет поступать в осветительный прибор, тем ярче он будет светить. Но яркость сказывается на сроке службы светодиода, во избежание не устанавливайте ток выше 20 мА, оптимальное значение 18 мА.

Регулировка зазоров клапанов ВАЗ 2106. Как сделать всё правильно и что для этого нужно, вы сможете узнать на нашем сайте.

, о поклейке карбоновой плёнкой авто, находится в этой статье, так же здесь, находится очень интересный и полезный материал!

Источник: https://kekso.ru/avtovaz/kak-sdelat-svetodiod-jarche/

Делаем светодиод своими руками

Вопрос: «Можно ли сделать светодиод своими руками?» среди рядовых мастеров наверняка вызовет удивление. Казалось бы, зачем придумывать то, что давно придумано и серийно выпускается? Однако существует такая категория людей, которые обожают мастерить что-то необычные. Для них конструирование светодиода – это возможность повторить эксперименты О.В. Лосева, проводимые около ста лет назад, и шанс доказать себе и друзьям реальность создания светодиода в домашних условиях.

Что понадобится

Основной конструкционный материал – кусочек карбида кремния. В обычном магазине его не купишь, но если постараться, то можно найти в интернете среди частных объявлений. Кроме него понадобится иголка от булавки, соединительные провода, два мебельных гвоздя с широкой шляпкой и регулируемый источник напряжения (0-10 вольт). Также понадобится припой и немного умения пользоваться паяльником. Для измерений параметров самодельного светодиода подойдет простой мультиметр.

Подготовительная работа

Первым делом нужно найти участок на поверхности карбида кремния, способный к излучению света. Для этого исходный материал придётся раздробить на несколько кусочков размером 2-5 мм. Затем каждый из них поочередно кладут на металлическую пластинку, подключенную к плюсу источника питания напряжением около 10В. Вторым электродом выступает острый щуп или игла, присоединённая к минусу источника питания.

Затем исследуемый кусочек нужно прижать пинцетом к пластине, и острой иглой прощупать его верхнюю часть в поисках светящегося участка. Таким образом, отбирают кристалл с наибольшей яркостью. Стоит отметить, что карбид кремния может излучать свет в спектре от оранжевого до зелёного.

Изготовление светодиода

Для удобства монтажа лучше взять гвоздик длиной 10-15 мм с большой шляпкой и хорошо её залудить. Она послужит основанием и теплоотводом для кристалла. С помощью паяльника олово на шляпке доводят до жидкого состояния и пинцетом слегка утапливают подготовленный экземпляр карбида. Естественно, что излучающий участок должен быть направлен вверх. После затвердевания припоя нужно убедиться в надёжной фиксации кристалла.

Для изготовления отрицательного электрода понадобится острая часть булавки и одножильный медный провод. Как видно из фото, обе детали лудятся и надёжно спаиваются между собой. Затем на проволоке делают петлю для придания ей свойства пружины. Свободный конец провода запаивают на шляпку второго гвоздя. Оба гвоздика прикрепляют к монтажной плате на небольшом расстоянии друг от друга.

На заключительном этапе к ножкам гвоздей подводят питание соответствующей полярности. Замыкается электрическая цепь иголкой, которую фиксируют в точке кристалла с максимальным свечением.

Плавно наращивая напряжение питания, можно определить значение, при котором яркость перестаёт интенсивно нарастать. В результате проведенных измерений падение напряжения составило 9В, а прямой ток 25 мА.

При смене полярности карбид кремния перестаёт излучать свет, что частично объясняет его полупроводниковые свойства.

Не удивлюсь, если радиолюбители со стажем выскажут свой негатив в адрес получившейся необычной конструкции, напоминающей простейший светодиод. Однако иногда собирать подобные вещи самостоятельно – это интересно и даже полезно. Примером служат радиолюбительские кружки для школьников, в которых дети знакомятся со свойствами разных материалов, учатся паять и познают азы полупроводников.

Источник: https://ledjournal.info/master-class/svetodiody-svoimi-rukami.html

Светодиоды – как работает, полярность, расчет резистора

Светодиоды – одни из самых популярных электронных компонентов, использующиеся практически в любой схеме. Словосочетание “помигать светодиодами” часто используется для обозначений первой задачи при проверке жизнеспособности схемы. В этой статье мы узнаем, как работают светодиода, сделаем краткий обзор их видов, а также разберемся с такими практическими вопросами как определение полярности и расчет резистора.

Устройство светодиода

Светодиоды — полупроводниковые приборы с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Излучаемый светодиодом свет лежит в узком диапазоне спектра. Иными словами, его кристалл изначально излучает конкретный цвет (если речь идёт об СД видимого диапазона) — в отличие от лампы, излучающей более широкий спектр, где нужный цвет можно получить лишь применением внешнего светофильтра. Диапазон излучения светодиода во многом зависит от химического состава использованных полупроводников.

 

Светодиод состоит из нескольких частей: 

  • анод, по которому подается положительная полуволна на кристалл; 
  • катод, по которому подается отрицательная полуволна на кристалл; 
  • отражатель; 
  • кристалл полупроводника; 
  • рассеиватель.  

Эти элементы есть в любом светодиоде, вне зависимости от его модели.  

Светодиод является низковольтным прибором. Для индикаторных видов напряжение питания должно составлять 2-4 В при токе до 50 мА. Диоды для освещения потребляют такое же напряжение, но их ток выше – достигает 1 Ампер. В модуле суммарное напряжение диодов оказывается равным 12 или 24 В.  

Подключать светодиод нужно с соблюдением полярности, иначе он выйдет из строя.  

Цвета светодиодов

Светодиоды бывают разных цветов. Получить нужный оттенок можно несколькими способами.  

Первый – покрытие линзы люминофором. Таким способом можно получить практически любой цвет, но чаще всего эта технология используется для создания белых светодиодов.  

RGB технология. Оттенок получается за счет применения в одном кристалле трех светодиодов красного, зеленого и синего цветов. Меняется интенсивность каждого из них, и получается нужное свечение.  

Применение примесей и различных полупроводников. Подбираются материалы с нужной шириной запрещенной зоны, и из них делается кристалл светодиода.   

Принцип работы светодиодов

Любой светодиод имеет p-n-переход. Свечение возникает при рекомбинации электронов и дырок в электронно-дырочном переходе. P-n переход создается при соединении двух полупроводников разного типа электропроводности. Материал n-типа легируется электронами, p-типа – дырками.  

При подаче напряжения электроны и дырки в p-n-переходе начинают перемещаться и занимать места. Когда носители заряда подходят к электронно-дырочному переходу, электроны помещаются в материал p-типа. В результате перехода электронов с одного энергетического уровня на другой выделяются фотоны. 

Не всякий p-n переход может излучать свет. Для пропускания света нужно соблюсти два условия: 

  • ширина запрещенной зоны должна быть близка к энергии кванта света; 
  • полупроводниковый кристалл должен иметь минимум дефектов.  

Реализовать подобное в структуре с одним p-n-переходом не получится. По этой причине создаются многослойные структуры из нескольких полупроводников, которые называются гетероструктурами.  

Для создания светодиодов используются прямозонные проводники с разрешенным прямым оптическим переходом зона-зона. Наиболее распространенные материалы группы А3В5 (арсенид галлия, фосфид индия), А2В4 (теллурид кадмия, селенид цинка).  

Цвет светоизлучающего диода зависит от ширины запрещенной зоны, в которой происходит рекомбинация электронов и дырок. Чем больше ширина запрещенной зоны и выше энергия квантов, тем ближе к синему излучаемый свет. Путем изменения состава можно добиться свечения в широком оптическом диапазоне – от ультрафиолета до среднего инфракрасного излучения.  

Светодиоды инфракрасного, красного и желтого цветов изготавливаются на основе фосфида галлия, зеленый, синий и фиолетовый – на основе нитридов галлия.  

Виды светодиодов, классификация

По предназначению выделяют индикаторные и осветительные светодиоды. Первые используются для стилизации, декоративной подсветки – например, украшение зданий, рекламные баннеры, гирлянды.  Осветительные приборы используются для создания яркого освещения в помещении.  

По типу исполнения выделяют: 

  • Dip светодиоды. Они представляют собой кристаллы, заключенные в цилиндрическую линзу. Относятся к индикаторным светодиодам. Существуют монохромные и многоцветные устройства. Используются редко из-за своих недостатков: большой размер, малый угол свечения (до 120 градусов), падение яркости излучения при долгом функционировании на 70%, слабый поток света.Dip светодиоды
  • Spider led. Такие светодиоды похожи на предыдущие, но имеют 4 выхода. В таких диодах оптимизирован теплоотвод, повышается надежность компонентов. Активно используются в автомобильной технике.  
  • Smd – светодиоды для поверхностного монтажа. Могут относиться как к индикаторным, так и к осветительным светодиодам.Smd
  • Cob (Chip-On-Board) – кристалл установлен непосредственно на плате. К преимуществам такого решения относятся защита от окисления, малые габариты, эффективный отвод тепла и равномерное освещение по всей площади. Светодиоды такой марки являются самыми инновационными. Используются для освещения. На одной подложке может быть установлено более 9 светодиодов. Сверху светодиодная матрица покрывается люминофором. Активно используются в автомобильной индустрии для создания фар и поворотников, при разработке телевизоров и экранов компьютеров.  Cob
  • Волоконные – разработка 2015 года. Могут использоваться в производстве одежды. Волоконные
  • Filament также является инновационным продуктом. Отличаются высокой энергоэффективностью. Используются для создания осветительных ламп. Важное преимущество – возможность осуществления монтажа напрямую на подложку из стекла. Благодаря такому нанесению есть возможность распространения света на 360 градусов. Конструкция состоит из сапфирового стекла с диаметром до 1,5 мм и специально выращенных кристаллов, которые соединены последовательно. Число кристаллов обычно ограничивается 28 штуками. Светодиоды помещаются в колбу, которая покрыта люминофором. Иногда филаментные светодиоды могут относить к классу COB изделий.Filament
  • Oled. Органические тонкопленочные светодиоды. Используются для построения органических дисплеев. Состоят из анода, подложки из фольги или стекла, катода, полимерной прослойки, токопроводящего слоя из органических материалов. К преимуществам относятся малые габариты, равномерное освещение по всей площади, широкий угол свечения, низкая стоимость, длительный срок службы, низкое потребление электроэнергии. Oled
  • В отдельную группу выделяются светодиоды, излучающие в ультрафиолетовом и инфракрасном диапазонах. Они могут быть с выводами, так и в виде smd исполнения. Используются в пультах дистанционного управления, бактерицидных и кварцевых лампах, стерилизаторах для аквариумов.  

Светодиоды могут быть:

  • мигающими – используются для привлечения внимания;
  • многоцветными мигающими;
  • трехцветными – в одном корпусе есть несколько несвязанных между собой кристаллов, которые работают как по отдельности, так и все вместе;
  • RGB;
  • монохромными.

Светодиоды классифицируются по цветовой гамме. Для максимально точной идентификации цвета в документации прибора указывается его длина волны излучения.  

Белые светодиоды классифицируются по цветовой температуре. Они бывают теплых оттенков (2700 К), нейтральных (4200 К) и холодных (6000 К). 

По мощности выделяют светодиоды, потребляющие единицы мВт до десятков Вт. Напрямую от мощности зависит сила света.  

Полярность светодиодов

Полярность светодиодов

При неправильном включении светодиод может сломаться. Поэтому важно уметь определять полярность источника света.  Полярность – это способность пропускать электрический ток в одном направлении.  

Полярность моно определить несколькими способами: 

  • Визуально. Это самый простой способ. Для нахождения плюса и минуса у цилиндрического диода со стеклянной колбой нужно посмотреть внутрь. Площадь катода будет больше, чем площадь анода. Если посмотреть внутрь не получится, полярность определяется по контактам – длинная ножка соответствует положительному электроду. Светодиоды типа  SMD имеют метки, указывающие на полярность. Они называются скосом или ключом, который направлен на отрицательный электрод. На маленькие smd наносятся пиктограммы в виде треугольника, буквы Т или П. Угол или выступ указывают на направление тока – значит, этот вывод является минусом. Также некоторые светодиоды могут иметь метку, которая указывает на полярность. Это может быть точка, кольцевая полоска.  
  • При помощи подключения питания. Путем подачи малого напряжения можно проверить полярность светодиода. Для этого нужен источник тока (батарейка, аккумулятор), к контактом которого прикладывается светодиод, и токоограничивающий резистор, через который происходит подключение. Напряжение нужно повышать, и светодиод должен загореться при правильном включении.  
  • При помощи тестеров. Мультиметр позволяет проверить полярность тремя способами. Первый – в положении проверка сопротивления. Когда красный щуп касается анода, а черный катода, на дисплее должно загореться число , отличное от 1. В ином случае на экране будет светиться цифра 1. Второй способ – в положении прозвонка. Когда красный щуп коснется анода, светодиод загорится. В ином случае он не отреагирует. Третий способ – путем установки светодиода в гнездо для транзистора. Если в отверстие С (коллектор) будет помещен катод – светодиод загорится.  
  • По технической документации. Каждый светодиод имеет свою маркировку, по которой можно найти информацию о компоненте. Там же будет указана полярность электродов.  

Выбор способа определения полярности зависит от ситуации и наличия у пользователя нужного инструмента.  

Расчет сопротивления для светодиода

Диод имеет малое внутреннее сопротивление. При подключении его напрямую к блоку питания, элемент перегорит. Чтобы этого не случилось, светодиод подключается к цепи через токоограничивающий резистор. Расчет производится по закону Ома: R=(U-Uled)/I, где R – сопротивление токоограничивающего резистора, U – питание источника; Uled – паспортное значение напряжения для светодиода, I – сила тока. По полученному значению и подбирается мощность резистора.  

Важно правильно рассчитать напряжение. Оно зависит от схемы подключения элементов.  

Можно не производить расчет сопротивления, если использовать в цепи мощный переменный или подстроечный резистор. Токоограничивающие резисторы существуют разного класса точности. Есть изделия на 10%, 5% и 1 % – это значит, что погрешность варьируется в указанном диапазоне.  

Выбирая токоограничивающий резистор, нужно обратить внимание и на его мощность. почти всегда, если при малом рассеивании тепла устройство будет перегреваться и выйдет из строя. Это приведет к разрыву электрической цепи.  

Когда нужно использовать токоограничивающий резистор: 

  • когда вопрос эффективности схемы не является основным – например, индикация; 
  • лабораторные исследования. 

В остальных случаях лучше подключать светодиоды через стабилизатор – драйвер, что особенно это актуально в светодиодных лампах. 

Онлайн – сервисы и калькуляторы для расчета резистора:

Источник: https://ArduinoMaster.ru/datchiki-arduino/printsip-raboty-i-vidy-svetodiodov/

8 способов сделать так, чтобы LED-индикаторы бытовой техники не бесили

Индикаторы работы есть во многих бытовых приборах. И если днём они не мешают, то вечером превращаются в орудия пыток, которые пытаются ослепить своим ярким свечением.

Излучение зелёных и красных светодиодов обычно довольно мягкое, а вот голубые сильно бьют по глазам и освещают комнату не хуже ночника. К счастью, существует достаточно способов сделать их менее яркими или даже полностью нейтрализовать.

1. Уберите устройства из поля зрения

Самый простой способ — развернуть устройство к стене. Или убрать куда-нибудь подальше, где оно не будет попадаться на глаза. Можно просто поставить перед ним другой предмет, который как щит закроет от ненавистного свечения.

2. Отключите индикаторы в настройках

Функция есть не везде, но на сложной современной технике она, как правило, доступна. Например, так можно отключить светодиоды на передней панели роутера или ТВ-приставки.

3. Залепите светодиоды

Да, это первое, что приходит на ум. Способ не сложнее предыдущих, при этом более гибкий. Если правильно подобрать материал для заклеивания глазков индикаторов, можно приглушить или полностью скрыть их свечение.

Вариантов масса. Выбирать стоит исходя из желаемого результата и цвета корпуса техники:

  • Чёрная изолента полностью блокирует огни, синяя и белая приглушают, оставляя индикатор функциональным.
  • Малярная лента обеспечивает самый слабый эффект. При необходимости его легко усилить, добавив дополнительные слои.
  • Скотч можно закрасить маркером и достичь необходимой степени затемнения, а то и полностью скрыть индикатор.
  • Тонировочная плёнка для авто отлично приглушает свет, в то же время оставляя его различимым.

4. Используйте специальные стикеры

Более продвинутая вариация предыдущего метода для ленивых. Купите готовые стикеры различной формы и размера с эффектом затемнения вплоть до полного. Они не оставляют липких следов после отклеивания.

5. Закрасьте индикаторы лаком

Обычный лак для ногтей позволяет бороться с ослепляющими светодиодами не хуже всевозможных наклеек. Подберите цвет, наложите необходимое количество слоёв, и получите аккуратный тюнинг индикаторов с желаемым эффектом затемнения.

6. Зашлифуйте поверхность индикатора

Можно приглушить свечение индикаторов, сделав их поверхность матовой. Возьмите мелкую наждачную бумагу и аккуратно зашкурьте светодиод или его стёклышко. После этого свет станет рассеянным, а не направленным и не будет слепить.

7. Физически отключите светодиоды

Если гарантия на электронику давно закончилась, а вы умеете держать в руках отвёртку и не боитесь сломать устройство, можно полностью отключить индикаторы, разорвав цепи питания. Для этого достаточно перекусить одну из ножек светодиода или перерезать дорожку на плате.

8. Добавьте в цепь индикатора сопротивление

Вариант для тех, кто дружит с паяльником. Суть метода в том, чтобы снизить напряжение питания индикатора, тем самым уменьшив его яркость. Необходимо подобрать резистор с нужным номиналом и впаять его перед светодиодом.

Источник: https://Lifehacker.ru/led-indikatory/

ЭТО ИНТЕРЕСНО:  Как называются задние фары

Понравилась статья? Поделиться с друзьями:
ЭлектроМастер
Сколько держит автомат 25 ампер

Закрыть