Q t что за формула

Интервал Q-T

q t что за формула

Интервал Q-T измеряют от начала комплекса QRS до конца зубца T.

Рис. 2-12. Измерение интервала Q-T. R-R – интервал между двумя последовательными комплексами QRS.

Значение интервала Q-T

Прежде всего этот интервал отражает возврат желудочков из состояния возбуждения в состояние покоя (реполяризация желудочков). Нормальное значение интервала Q-T зависит от частоты ритма сердца. При увеличении частоты ритма [укорочении интервала R-R (интервал между последовательными комплексами QRS)] характерно укорочение интервала Q-T, при замедлении ритма (удлинении интервала R-R) – удлинение интервала Q-T.

Правила измерения интервала Q-T

Интервал Q-T следует измерять в том отведении электрокардиограммы (см. раздел «Отведения ЭКГ»), где его длина максимальна. Необходимо измерить несколько интервалов и вычислить их среднее значение.

Когда интервал Q-T удлинён, измерение часто затруднено из-за незаметного слияния конечной части зубца T с зубцом U. В результате можно измерить интервал Q-U, а не Q-T.

В табл. 2-1 указаны приблизительные значения верхней границы нормы интервала Q-T для различной частоты ритма сердца. К сожалению, более простого способа определить нормальную величину Q-T не существует.

Предложен другой показатель – корригированный интервал Q-T в зависимости от частоты ритма.

Корригированный интервал Q-T (Q-TK) можно получить, разделив продолжительность фактического интервала Q-T на квадратный корень величины интервала R-R (оба значения указывают в секундах):

QTC = (QT) ÷ (√RR)

В норме интервал Q-T не превышает 0,44 с. Для вычисления интервала Q-T в зависимости от частоты ритма предложены и другие формулы, но все они не универсальные. Ряд авторов называют верхней границей Q-T y мужчин 0,43 с, у женщин – 0,45 с.

Правило. При ритме сердца до 80 в минуту корригированный интервал Q-T превышающий половину интервала R-R, всегда удлинён. Важно, что при ритме сердца менее 80 в минуту интервал Q-T может составлять менее половины R-R и быть значительно удлинённым. При сердечном ритме более 80 в минуту интервал Q-T, составляющий более половины интервала R-R, не обязательно удлинён (см. табл. 2-1).

Изменения длины интервала Q-T

Патологическому удлинению интервала Q-T могут способствовать многие факторы (рис. 2-13).

Рис. 2-13. Удлинение интервала Q-T у больного, принимающего хинидин. Фактический интервал Q-T (0,6 с) значительно удлинён для данной частоты ритма (65 уд/мин); корригированный интервал Q-T (в норме – менее 0,44 с) также удлинён (0,63 с); замедление реполяризации желудочков предрасполагает к развитию жизнеугрожающей желудочковой тахикардии типа «пируэт»; вычисление интервала Q-T в данном случае выполняют следующим образом: QTC = (QT) ? (?RR) = 0,60 ? ?0,92 = 0,63

Например, его продолжительность могут увеличивать некоторые антиаритмические препараты (амиодарон, дизопирамид, дофетилидр, ибутилид, прокаинамид, хинидин, соталол), трициклические антидепрессанты (фенотиазины, пентамидин и др.). Нарушения электролитного обмена (снижение уровня калия, магния или кальция) также рассматривают как важную причину удлинения интервала Q-T.

Гипотермия также способствует его удлинению за счёт замедления реполяризации клеток миокарда. Другие причины удлинения интервала Q-T – ишемия, инфаркт миокарда (особенно острая стадия) и субарахноидальные кровоизлияния.

Увеличение продолжительности интервала Q-T предрасполагает к развитию жизнеугрожающих желудочковых аритмий [желудочковая тахикардия (ЖТ) типа «пируэт» (torsades de pointes)].

Дифференциальная диагностика состояний с удлинённым интервалом Q-T описана в гл. 24.

Укорочение интервала Q-T возможно при приёме терапевтических доз сердечных гликозидов или при гиперкальциемии. Нижние границы нормальных значений интервала Q-T точно не определены, поэтому в таблице 2-1 указаны только его верхние границы.

Источник: http://cardiography.ru/zubtsyi_elektrokardiogrammyi/parametryi_znacheniya_ekg/interval_q_t.html

Интервал QT на ЭКГ: значение показателя и расшифровка отклонений

q t что за формула

Электрокардиограмма- это график отраженных от внутренних органов электрических импульсов малой интенсивности. По характеру и взаиморасположению ключевых точек графика врачи могут судить о здоровье как сердечно-сосудистой системы, так и о связанных сопутствующих заболеваниях. Интервал Q-T между характерными точками графика – важный показатель состояния пациента. По его отклонению от нормы судят о серьезных угрозах здоровью.

Базовые элементы ЭКГ

Электрокардиография- отрасль медицинской науки, исследующая параметры сердечно-сосудистой системы, и прежде всего- самого сердца методами измерения проходящих через них электрических импульсов. Отраженные импульсы представляются аппаратурой в виде графика. Каждая фаза сердечных сокращений и расслаблений имеет свою характерную точку или участок на кардиограмме.

Расстояние между и пропорции этих элементов, рассмотренные с учетом кровяного давления, частоты сердечных сокращений и других показателей ритма, позволяют судить об общем состоянии сердечно-сосудистой системы пациента.

Кроме того, на основании соотношений между значениями графика специалист может сделать вывод о наличии тех или иных заболеваний, сердечно-сосудистых, иммунных или генетических.

Базовые элементы ЭКГ

Основные элементы графика таковы:

  • зубец P отражает момент возбуждения предсердий
  • участок QRS соответствует сокращению желудочков
  • участок ST, а также пики T и U- расслаблению (реполяризации) желудочков;
  • пик T присутствует не на каждой кардиограмме и соответствует заключительному этапу расслабления.

Амплитуда графика увеличивается при интенсивной работе сердца, при ослаблении нагрузки график становится более пологим.

Удлинение участков P-Q и Q-T указывает на низкую активность сердечной деятельности. Интервал qt на ЭКГ служит важнейшим маркером рядя серьезных заболеваний.

О чем говорит отклонение интервала от нормы?

Отклонения интервала Q-T от нормы указывают на серьезные проблемы со здоровьем. Опасно как удлинение, так и укорачивание интервала. Отклонения в разную сторону имеют разные причины возникновения и особенности протекания болезни, при их обнаружении специалист- кардиолог назначает дополнительные обследования.

Синдром удлиненного интервала Q-T

Корреляция удлинения интервала Q-T и симптомов тяжких наследственных заболеваний была описана в 1957 г американскими исследователями, изучавшими синдром врожденной глухоты, синкопе и внезапной смерти у детей и подростков.

Им удалось обнаружить сходные изменения кардиограммы у трех поколений одной семьи. И бабушка, и мать, и дочь в той или иной мере страдали от сходных заболеваний.

Кроме причин генетического характера, на удлинение интервала qt может влиять целый ряд факторов. Наиболее распространенными среди них считаются:

  • прием лекарств против аритмии;
  • большие дозы антибиотиков;
  • антигистаминные препараты;
  • антидепрессанты;
  • нейролептические средства;
  • тяжелые отравления ртутными и органическими веществами;
  • нарушения электролитического баланса;
  • дефицит белковой пищи.

Большие дозы антибиотиков могут могут влиять на удлинение интервала Q-T

От своевременности постановки диагноза напрямую зависит эффективность терапии. Чем раньше удалось обнаружить заболевание, тем больше шансов на излечение или облегчение состояния пациента.

Синдром короткого интервала Q

Причины возникновения чаще всего генетические. Интервал укорачивается до значений менее 300 мс, пики T имеют характерную острую форму м большую амплитуду. При этом анатомия сердечной мышцы не демонстрирует видимых изменений. Предполагаемой причиной генетических отклонений служит ряд генов группы KCN.

Они отвечают за состояние особенных клеток миокарда- так называемых ионных каналов. Они предают позитивные ионы калия через клеточные мембраны и служат важным фактором регулирования сердечной активности. Мутационные изменения генов группы KCN вызывают рост проводимости ионных каналов, что и приводит к патологическим изменениям сердечного ритма, увеличению и заострению зубца T и удлинению интервала Q-T.

Укороченный интервал qt у детей вызывает частые внезапные смерти в младенческом, детском и подростковом возрасте, интенсивные сердцебиения и фибрилляцию желудочков.

Клинические проявления

В детском возрасте синдром удлиненного интервала QT является одной из самых частых причин внезапной остановки сердца и гибели пациента. Без своевременного диагностирования заболевания и специфической поддерживающей терапии смертность в течение первых 10 лет жизни доходит до 60%.

Прием блокирующих излишний ионный синтез препаратов позволяет снизить смертность от этой причины втрое.

Существенные затруднения специалисты испытывают с точной постановкой диагноза, поскольку из одного синдрома могут выделяться разные состояния, вызванные специфическими факторами. В реальности интервал QT указывает на ряд болезней, объединенных высоким риском для жизни пациента, вызывающих сильные аритмии и остановку сердца.

Синдром укороченного интервала QТ проявляется в виде интенсивного сердцебиения вплоть до остановки сердца. Повторяющаяся фибрилляция предсердий также указывает на это заболевание.

Диагностика

Диагностика начинается с исследования состояния здоровья семьи пациента. Если родственники по прямой линии страдали одним из видов заболевания- пациент находится в зоне особого риска и подлежит более детальному кардиологическому обследованию.

Если у пациента детского возраста наблюдались синкопе или пред-синкопе состояния, ему назначены препараты, потенциально осложняющие синдром удлиненного интервала QT- углубленное исследование также необходимо. Такие исследования обычно проводят в динамике, контролируемо изменяя нагрузку на сердечную мышцу и фиксируя ее поведение на продолжительной кардиограмме

При укороченном интервале QT назначают генетический тест

При обнаружении симптоматики, характерной для укороченного интервала, помимо расширенного кардиологического исследования назначают также генетический тест, призванный обнаружить мутации в генах группы KCN, прежде всего- J2. Такие тесты проводят в современных медицинских центрах и лабораториях, средняя стоимость от 13 до 16 тысяч рублей.

Методы терапии

Для лечения удлиненного интервала qt показаны лекарственные средства, снижающие проницаемость кальциевых каналов в комплексе с препаратами магния.

При учащении синкопе или ухудшении динамики кардиограммы добавляют противосудорожные средства и стимуляторы кровообращения в сосудах головного мозга.

Кардинальным решением служит имплантация кардиостимулятора, нормализующего сердечные ритмы с помощью управляющих импульсом малой интенсивности.

При укорочении интервала QT прежде всего следует отменить препараты, активизирующие ионные каналы, заменив их на ионно-нейтральные аналоги. Далее применяются препараты, удлиняющие интервал QT. Наибольшую эффективность, продемонстрировал хинидин, он не только возвращает интервал к нормальным значениям, но и упорядочивает фибрилляцию желудочков. Другие препараты для увеличения интервала QT демонстрируют меньшую эффективность и большое число побочных явлений.

Хинидин – препарат для терапии укороченного интервала QT

Если изменения на кардиограмме сохраняются, может быть показана операция по установке кардиовертера с дефибриллирующим эффектом. Современные водители ритма способны компенсировать большинство нарушений сердечного ритма средней тяжести.

Осложнения и прогноз

Удлиненный интервал QT может вызвать такие осложнения, как анорексия на нервной почве, внутрисосудистые кровоизлияния, брадикардию и другие.

Прогноз в этом случае не относится к благоприятным. Смертность в случае врожденного синдрома превышает 60%, Своевременная диагностика и правильно назначенное лечение сводит риск до 3-5 %

Врожденный укороченный интервал QT приводит к таким неприятным осложнениям, как желудочковая тахикардия и внезапная смерть от остановки сердца.

Прогноз также неблагоприятен. Врожденная аномалия заканчивается смертью пациента в 60% случаев в течение первых 10 лет жизни. При своевременной диагностике и корректно назначенном поддерживающем лечении смертность удается довести до 20 %.

Нарушения нормальной длительности интервала QT на кардиограмме свидетельствуют о серьезных заболеваниях, угрожающих здоровью и жизни пациента. Своевременная диагностика, глубокое обследование и поддерживающая терапия позволяют снизить риск внезапной смерти, особенно в детском возрасте, в несколько раз.

Источник: https://med-advisor.ru/interval-qt-01/

Закон Джоуля – Ленца. Определение, формула, физический смысл

q t что за формула

Закон Джоуля – Ленца – закон физики, определяющий количественную меру теплового действия электрического тока. Сформулирован этот закон был в 1841 году английским учёным Д. Джоулем и совершенно отдельно от него в 1842 году известным русским физиком Э. Ленцем. Поэтому он получил своё двойное название — закон Джоуля – Ленца.

Определение закона и формула

Словесная формулировка имеет следующий вид: мощность тепла, выделяемого в проводнике при протекании сквозь него электрического тока, пропорционально произведению значения плотности электрического поля на значение напряженности.

Математически закон Джоуля — Ленца выражается следующим образом:

ω = j • E = ϭ E²,

где ω — количество тепла, выделяемого в ед. объема;

E и j – напряжённость и плотность, соответственно, электрического полей;

σ — проводимость среды.

Физический смысл закона Джоуля – Ленца

Закон можно объяснить следующим образом: ток, протекая по проводнику, представляет собой перемещение электрического заряда под воздействием электрического поля. Таким образом, электрическое поле совершает некоторую работу. Эта работа расходуется на нагрев проводника.

Другими словами, энергия переходит в другое свое качество – тепло.

Но чрезмерный нагрев проводников с током и электрооборудования допускать нельзя, поскольку это может привести к их повреждению. Опасен сильный перегрев при коротких замыканиях проводов, когда по проводниках могут протекать достаточно большие токи.

В интегральной форме для тонких проводников закон Джоуля – Ленца звучит следующим образом: количество теплоты, которое выделяется в единицу времени в рассматриваемом участке цепи, определяется как произведение квадрата силы тока на сопротивление участка.

Математически эта формулировка выражается следующим образом:

Q = ∫ k • I² • R • t,

при этом Q – количество выделившейся теплоты;

I – величина тока;

R — активное сопротивление проводников;

t – время воздействия.

Значение параметра k принято называть тепловым эквивалентом работы. Величина этого параметра определяется в зависимости от разрядности единиц, в которых выполняются измерения значений, используемых в формуле.

Закон Джоуля-Ленца имеет достаточно общий характер, поскольку не имеет зависимости от природы сил, генерирующих ток.

Из практики можно утверждать, что он справедлив, как для электролитов, так проводников и полупроводников.

Область применения

Областей применения в быту закона Джоуля Ленца – огромное количество. К примеру, вольфрамовая нить в лампе накаливания, дуга в электросварке, нагревательная нить в электрообогревателе и мн. др. Это наиболее широко распространенный физический закон в повседневной жизни.

Источник: https://pue8.ru/elektrotekhnik/823-zakon-dzhoulya-lentsa-opredelenie-formula-fizicheskij-smysl.html

Синдром удлиненного интервала QT: признаки, симптомы, ЭКГ, диагностика, прогноз

Синдром удлиненного интервала QT является врожденным расстройством, характеризующимся продлением интервала QT на электрокардиограмме (ЭКГ) и склонностью к желудочковым тахикардиям, что может приводить к обморокам, остановке сердца или внезапной сердечной смерти (ВСС). См. Изображение ниже.

Отмечено продление интервала QT у 15-летнего подростка с синдромом удлиненного QT (R-R = 1,00 с, интервал QT = 0,56 с, интервал QT, скорректированный на частоту сердечных сокращений [QTc] = 0,56 с). Аномальная морфология реполяризации может наблюдаться почти во всех отведениях (т. е. в пиках T-волн, пологого сегмента ST). Брадикардия является общей особенностью у пациентов с данным синдромом.

Интервал QT на ЭКГ, замеренный от начала комплекса QRS до конца волны T, представляет собой продолжительность активации и восстановления желудочкового миокарда.

ЭТО ИНТЕРЕСНО:  Кто открыл магнитное поле

Интервал QT, скорректированный на частоту сердечных сокращений, который превышает 0,44 секунды, обычно считается ненормальным, хотя нормальный QTc может быть более продолжительным у женщин (до 0,46 сек).

Формула Базета – это формула, наиболее часто используемая для вычисления QTc, следующим образом: QTc = QT / квадратный корень интервала R-R (в секундах).

Чтобы точно измерить интервал QT, связь QT с интервалом R-R должна быть воспроизводимой. Эта проблема особенно важна, когда частота сердечных сокращений ниже 50 ударов в минуту (уд / мин) или более 120 уд / мин, а также когда спортсмены или дети имеют отмеченную вариабельность R-R.

В таких случаях требуются длинные записи ЭКГ и несколько измерений. Самый длинный интервал QT обычно наблюдается в правильных предсердных отведениях. Когда отмеченное изменение присутствует в интервале R-R (фибрилляция предсердий, эктопия), коррекцию интервала QT сложно точно определить.

Признаки и симптомы

Синдром удлиненного интервала QT как правило диагностируется после того, как у человека случается приступ обморока или сердечный приступ. В некоторых ситуациях это состояние диагностируется после внезапной смерти члена семьи. У некоторых людей диагноз ставится, когда ЭКГ показывает удлинение интервала  QT.

Исследования

Диагностические исследования у людей с подозрением на синдром включают в себя следующие:

  • Измерение уровня калия и магния в сыворотке;
  • Исследование функции щитовидной железы;
  • Фармакологические провокационные пробы эпинефрином или изопротеренолом;
  • Электрокардиография больного и членов семьи;
  • Генетическое тестирование больного и членов семьи.

Удлинённый скорректированный интервал QT в ответ на тест, когда пациент стоит, который связан с повышенным симпатическим тоном, может дать больше диагностической информации у больных, имеющих синдром. Это увеличение QT в результате положения стоя может сохраняться даже после того, как частота сердечных сокращений вернется в норму.

Лечение

Никакое лечение не может устранить причину синдрома удлиненного интервала QT. Антиадренергические терапевтические меры (например, использование бета-адреноблокаторов, левосторонняя церукотракальная стеллектомия) и аппаратная терапия (например, использование кардиостимуляторов, имплантируемых кардиовертер-дефибрилляторов) направлены на снижение риска и летальности сердечных приступов.

Медикаментозное

Бета-адренергические блокирующие агенты являются лекарственными препаратами, которые могут назначаться для лечения синдрома и включают в себя следующие препараты:

  • Надолол
  • Пропранолол
  • Метопролол
  • Атенолол

При этом Надолол является предпочтительным бета-блокатором, который должен использоваться в дозе 1-1,5 мг / кг / день (один раз в день для больных старше 12 лет, два раза в день для более молодых людей).

Хирургическое лечение

Хирургическое вмешательство у людей, страдающим синдромом удлиненного интервала QT может включать следующие процедуры:

Имплантация кардиовертер-дефибрилляторов

Размещение кардиостимулятора

Левая цервико торакальная стеллэктомия

Люди, у которых наблюдается синдром, должны избегать участия в спортивных соревнованиях, выполнять тяжелые физические упражнения и стараться не избегать эмоциональных стрессов.

Кроме того, также следует избегать следующих препаратов:

Анестетики или лекарства от астмы (например, адреналин)

Антигистамины (например, дифенгидрамин, терфенадин и астемизол)

Антибиотики (например, эритромицин, триметоприм и сульфаметоксазол, пентамидин)

Сердечные препараты (например, хинидин, прокаинамид, дисопирамид, соталол, пробукол, бепридил, дофетилид, ибутилид)

Желудочно-кишечные препараты (например, цизаприд)

Противогрибковые препараты (например, кетоконазол, флуконазол, итраконазол)

Психотропные препараты (например, трициклические антидепрессанты, производные фенотиазина, бутирофеноны, бензизоксазол, дифенилбутилпиперидин)

Калий-теряет лекарства (например, индапамид, другие диуретики, лекарства от рвоты / диареи)

Причины

Интервал QT представляет собой продолжительность активации и восстановления желудочкового миокарда. Продолжительное восстановление от электрического возбуждения увеличивает вероятность дисперионной рефрактерности, когда некоторые части миокарда могут быть невосприимчивыми к последующей деполяризации.

С физиологической точки зрения дисперсия происходит при реполяризации между тремя слоями сердца, а фаза реполяризации имеет тенденцию к увеличению в среднем миокарде. Вот почему T-волна обычно широкая, а интервал Tpeak-Tend (Tp-e) представляет собой трансмуральную дисперсию реполяризации. При длительном синдроме QT она увеличивается и создает функциональную возможность для трансмуральной повторной инициации.

Гипокалиемия, гипокальциемия и использование петлевых диуретиков являются факторами риска удлинения интервала QT.

Синдром делится на два клиинческих варианта – синдром Романо-Уорда (семейным происхождением с аутосомно-доминантным наследованием, продолжением QT и желудочковыми тахикардиями) или синдромом Джервелла и Ланга-Нильсена (с семейным происхождением с аутосомно-рецессивным наследованием, врожденной глухотой , удлинением QT и желудочковыми аритмиями). Описаны два других синдрома: синдром Андерсена и синдром Тимоти, хотя среди ученых ведутся некоторые споры о том, следует ли их включать в синдром удлиненного интервала QT.

Тахиаритмия Torsade de pointes

Удлинение QT может привести к полиморфной желудочковой тахикардии, что само по себе может привести к фибрилляции желудочков и внезапной сердечной смерти.

Широко распространено мнение о том, что Torsade de pointes активируется реактивацией кальциевых каналов, реактивацией запаздывающего тока натрия или уменьшением тока в камере, который приводит к ранней последеполяризации, в состоянии с повышенной трансмуральной дисперсией реполяризации, обычно связанной с удлиненным интервалом QT, служит в качестве функционального вспомогательного субстрата для поддержания тахикардии.

Трансмуральная дисперсия реполяризации не только обеспечивает субстрат для механизма повторного входа, но также увеличивает вероятность ранней постдеполяризации, инициирующего события для тахиаритмии, за счет продления временного окна для каналов кальция, чтобы оно оставалось открытым. Любое дополнительное условие, которое ускоряет реактивацию кальциевых каналов (например, повышенный симпатический тон), увеличивает риск ранней постдеполяризации.

Генетика

Известно, что синдром удлиненного интервала QT вызван мутациями генов сердечных каналов калия, натрия или кальция; было идентифицировано по меньшей мере 10 генов. Основываясь на этом генетическом фоне, характеризуются 6 типов синдрома Романо-Уорда, 1 тип синдрома Андерсена и 1 тип синдрома Тимоти и 2 типа синдрома Джервелла-Ланге-Нильсена.

Синдром является результатом мутаций генов, кодирующих белки сердечного ионного канала, которые вызывают аномальную кинетику ионных каналов. Укороченное отверстие калиевого канала при 1 типе, 2 типе, 5 типе, 6 типе, 1 и 1 типе синдрома Джервелла-Ланге-Нильсена и замедленное закрытие натриевого канала в при 3 типе синдрома перезаряжает миокардиальную клетку положительными ионами.

У людей, имеющих синдром различные адренергические стимулы, включая физические упражнения, эмоции, громкий шум и плавание, могут ускорить аритмическую ответную реакцию. Однако аритмии могут возникать и без таких предшествующих состояний.

Удлинение интервала QT, вызванное лекарственными препаратами

Вторичное (индуцированное лекарством) удлинение интервала QT также может увеличить риск наступления желудочковых тахиаритмий и внезапной сердечной смерти. Ионный механизм аналогичен ионному механизму, наблюдаемому при врожденном синдроме (т. е. внутренней блокаде выброса калия).

В дополнение к лекарственным средствам, которые потенциально могут удлинить интервал QT, в этом расстройстве играют роль несколько других факторов. Важными факторами риска для удлинения QT, вызванного лекарственными средствами, являются следующие:

Электролитные нарушения (гипокалиемия и гипомагниемия)

Гипотермия

Аномальная функция щитовидной железы

Структурная болезнь сердца

Брадикардия

Лекарственное удлинение QT может также иметь генетический фон, состоящий из предрасположенности ионного канала к аномальной кинетике, вызванной мутацией или полиморфизмом гена. Однако данных недостаточно, чтобы утверждать, что у всех больных с удлинением QT, вызванным лекарственным средством, существует генетическая обусловленность синдрома.

Прогноз

Прогноз для людей, страдающих синдромом хороший, который лечится приемом бета-блокаторов (и при необходимости использованием других терапевтических мер). К счастью, эпизоды torsade de pointes обычно самоограничиваются у пациентов с  синдромом QT; только около 4-5% сердечных приступов имеют смертельный исход.

Люди с высоким риском (т. е. те, у кого случалась остановка сердца или происходили повторные сердечные приступы, несмотря на бета-блокаторную терапию) значительно повышают риск внезапной сердечной смерти. Для лечения таких больных используется имплантируемый кардиовертер-дефибриллятор; прогноз после имплантации МКБ хороший.

Смертность, заболеваемость и ответные реакции на фармакологическое лечение различаются по различным типам синдрома.

Синдром удлиненного интервала QT может приводить к обморокам, внезапной сердечной смерти, что как правило происходит у здоровых молодых людей.

Несмотря на то, что внезапная сердечная смерть обычно возникает у больных с симптомами, она также может возникать при первом эпизоде обморока примерно у 30% больных . Это подчеркивает важность диагностики синдрома в предсимптомный период. В зависимости от типа присутствующей мутации внезапная сердечная смерть может иметь место во время физических нагрузок, эмоционального стресса, покоя или сна. 4 тип синдрома связан с пароксизмальной фибрилляцией предсердий.

Научные исследования показали улучшенную ответную реакцию на фармакологическое лечение с пониженной частотой внезапной сердечной смерти при 1 и 2 типах синдрома QT по сравнению с 3 типом.

Неврологический дефицит после прерванной остановки сердца может осложнить клинический курс пациентов после успешной реанимации.

 Синдром удлиненного интервала QT

Источник: https://cardio-bolezni.ru/sindrom-udlinennogo-intervala-qt-priznaki-simptomy-ekg-diagnostika-prognoz/

Интервал QT на ЭКГ — норма, и какие патологии вызывают отклонения от нее

Величина интервала QT мало о чем говорит обычному человеку, но врачу она может многое рассказать о состоянии сердца пациента. Соответствие норме указанного интервала определяется на основании анализа электрокардиограммы (ЭКГ).

Базовые элементы электрической кардиограммы

Электрокардиограмма представляет собой запись электрической деятельности сердца. Этот метод оценки состояния сердечной мышцы известен давно и широко распространен из-за своей безопасности, доступности, информативности.

Записывает кардиограмму электрокардиограф на специальной бумаге, поделенной на клетки шириной и высотой в 1 мм. При скорости движения бумаги 25 мм/с сторона каждого квадрата соответствует 0,04 секунды. Нередко встречается и скорость движения бумаги 50 мм/с.

Электрическая кардиограмма состоит из трех базовых элементов:

  • зубцов,
  • сегментов,
  • интервалов.

Зубец – это своеобразный пик, идущий либо вверх, либо вниз на линейном графике. На ЭКГ регистрируется шесть зубцов (P, Q, R, S, T, U). Первый зубец относится к сокращению предсердий, последний зубец не всегда присутствует на ЭКГ, поэтому его называют непостоянным. Зубцы Q, R, S показывают, как сокращаются сердечные желудочки. Зубец Т характеризует их расслабление.

Сегмент – это отрезок прямой линии между соседними зубцами. Интервалы представляют собой зубец с сегментом.

Для характеристики электрической деятельности сердца наибольшее значение имеют интервалы PQ и QT.

  1. Первый интервал – это время прохождения возбуждения по предсердиям и атриовентрикулярному узлу (проводящей системе сердца, расположенной в межпредсердной перегородке) до миокарда желудочков.
  1. Интервал QT отражает совокупность процессов электрического возбуждения клеток (деполяризации) и возвращения в состояние покоя (реполяризации). Поэтому интервал QT называют электрической систолой желудочков.

Почему длина интервала QT столь значима при анализе ЭКГ? Отклонение от нормы этого интервала свидетельствует о нарушении процессов реполяризации желудочков сердца, что в свою очередь может обернуться серьезными сбоями сердечного ритма, например, полиморфной желудочковой тахикардией. Так называют злокачественную аритмию желудочков, которая способна привести к внезапной смерти больного.

В норме продолжительность интервала QT находится в пределах 0,35-0,44 секунды.

 Величина интервала QT может изменяться в зависимости от множества факторов. Основные из них:

  • пол,
  • возраст,
  • частота сердечных сокращений,
  • состояние нервной системы,
  • электролитный баланс в организме,
  • время суток,
  • наличие в крови определенных лекарственных препаратов.

Выход продолжительности электрической систолы желудочков за пределы 0,35-0,44 секунды дает врачу основание говорить о протекании патологических процессов в сердце.

Синдром удлиненного интервала QT

Различаются две формы заболевания: врожденную и приобретенную.

Врожденная форма патологии

Наследуется по аутосомно-доминантному (один из родителей передает ребенку дефектный ген) и аутосомно-рецессивному типу (оба родителя имеют дефектный ген). Дефектные гены нарушают функционирование ионных каналов. Специалисты классифицируют четыре вида этой врожденной патологии.

  1. Синдром Романо-Уорда. Наиболее часто встречается – приблизительно у одного ребенка на 2000 новорожденных. Характеризуется частыми приступами пируэтной тахикардии с непредсказуемой частотой сокращения желудочков.

Пароксизм может пройти самостоятельно, а может и перейти в фибрилляцию желудочков с внезапной смертью.

Для приступа характерны следующие симптомы:

  • бледность кожи,
  • учащенное дыхание,
  • судороги,
  • потеря сознания.

Больному противопоказаны физические нагрузки. Например, дети освобождаются от уроков физкультуры.

Лечат синдром Романо-Уорда медикаментозными и хирургическими методами. При медикаментозном способе врач назначает максимально приемлемую дозу бета-андреноблокаторов. Хирургическое вмешательство производится для коррекции проводящей системы сердца или установки кардиовертера-дефибриллятора.

  1. Синдром Джервелла-Ланге-Нильсена. Не так распространен, как предыдущий синдром. В этом случае наблюдается:
  • более заметное удлинение интервала QT,
  • увеличение частоты приступов желудочковой тахикардии, чреватых смертью,
  • врожденная глухота.

Применяются в основном хирургические методы лечения.

  1. Синдром Андерсена-Тавила. Это редкая форма генетической, передаваемой по наследству болезни. Больной подвержен приступам полиморфной желудочковой тахикардии и двунаправленной желудочковой тахикардии.

    Патология четко дает знать о себе внешним видом больных:

  • низкий рост,
  • искривление позвоночника,
  • низкое расположение ушей,
  • аномально большое расстояние между глазами,
  • недоразвитие верхней челюсти,
  • отклонения в развитии пальцев рук.

Заболевание может протекать с различной степенью тяжести. Наиболее эффективным методом терапии считается установка кардиовертера-дефибриллятора.

  1. Синдром Тимоти. Встречается крайне редко. При этом заболевании наблюдается максимальное удлинение интервала QT.

    Каждые шесть больных из десяти с синдромом Тимоти имеют различные врожденные пороки сердца (тетрада Фалло, открытый артериальный проток, дефекты межжелудочковых перегородок). Присутствуют разнообразные физические и психические аномалии.

    Средняя продолжительность жизни составляет два с половиной года.

Приобретенная форма патологии

Клиническая картина похожа по проявлениям на наблюдаемую при врожденной форме. В частности, характерны приступы желудочковой тахикардии, обмороки.

Приобретенный удлиненный интервал QT на ЭКГ может фиксироваться по разным причинам.

  1. Прием антиаритмических лекарств: хинидина, соталола, аймалина и других.
  2. Нарушение электролитного баланса в организме.
  3. Злоупотребление спиртными напитками нередко вызывает пароксизм желудочковой тахикардии.
  4. Ряд сердечно-сосудистых заболеваний вызывает удлинение электрической систолы желудочков.

Лечение приобретенной формы в первую очередь сводится к устранению причин, вызвавших ее.

Синдром короткого интервала QT

Тоже бывает либо врожденным, либо приобретенным.

Закон Джоуля-Ленца: определение, формула, применение

Мы ежедневно пользуемся электронагревательными приборами, не задумываясь, откуда берётся тепло. Разумеется, вы знаете, что тепловую энергию вырабатывает электричество. Но как это происходит, а тем более, как оценить количество выделяемого тепла, знают не все. На данный вопрос отвечает закон Джоуля-Ленца, обнародованный в позапрошлом столетии.

В 1841 году усилия английского физика Джоуля, а в 1842 г. исследования русского учёного Ленца увенчались открытием закона, применение которого позволяет количественно оценить результаты теплового действия электрического тока [ 1 ]. С тех пор изобретено множество приборов, в основе которых лежит тепловое действие тока. Некоторые из них, изображены на рис. 1.

Рис. 1. Тепловые приборы

Определение и формула

Тепловой закон можно сформулировать и записать в следующей редакции: «Количество тепла, выработанного током, прямо пропорционально квадрату приложенного к данному участку цепи тока, сопротивления проводника и промежутка времени, в течение которого электричество действовало на проводник».

Обозначим символом Q количество выделяемого тепла, а символами I, R и Δt – силу тока, сопротивление и промежуток времени, соответственно. Тогда формула закона Джоуля-Ленца будет иметь вид: Q = I2*R*Δt

Согласно законам Ома I=U/R, откуда R = U/I. Подставляя выражения в формулу Джоуля-Ленца получим: Q = U2/R * Δt ⇒ Q = U*I*Δt.

Выведенные нами формулы – различные формы записи закона Джоуля-Ленца. Зная такие параметры как напряжение или силу тока, можно легко рассчитать количество тепла, выделяемого на участке цепи, обладающем сопротивлением R.

Дифференциальная форма

Чтобы перейти к дифференциальной форме закона, проанализируем утверждение Джоуля-Ленца применительно к электронной теории. Приращение энергии электрона ΔW за счёт работы электрических сил поля равно разности энергий электрона в конце пробега (m/2)*(u=υmax)2и в начале пробега (mu2)/2 , то есть

Здесь u – скорость хаотического движение (векторная величина), а υmax – максимальная скорость электрического заряда в данный момент времени.

Поскольку установлено, что скорость хаотического движения с одинаковой вероятностью совпадает с максимальной (по направлению и в противоположном направлении), то выражение 2*u*υmax в среднем равно нулю. Тогда полная энергия, выделяющаяся при столкновениях электронов с атомами, образующими узлы кристаллической решётки, составляет:

Это и есть закон Джоуля-Ленца, записанный в дифференциальной форме. Здесь γ – согласующий коэффициент,  E – напряжённость поля.

Интегральная форма

Предположим, что проводник имеет цилиндрическую форму с сечением S. Пусть длина этого проводника составляет l. Тогда мощность P, выделяемая в объёме V= lS составляет:

гдеR – полное сопротивление проводника.

Учитывая, чтоU = I×R, из последней формулы имеем:

  • P = U×I;
  • P = I2R;
  • P = U2/R.

Если величина тока со временем меняется, то количество теплоты вычисляется по формуле:

Данное выражение, а также вышеперечисленные формулы, которые можно переписать в таком же виде, принято называть интегральной формой закона Джоуля-Ленца.

Формулы очень удобны при вычислении мощности тока в нагревательных элементах. Если известно сопротивление такого элемента, то зная напряжение бытовой сети легко определить мощность прибора, например, электрочайника или паяльника.

Физический смысл

Вспомним, как электрический ток протекает по металлическому проводнику. Как только электрическая цепь замкнётся, то под действием ЭДС движение свободных электронов упорядочивается, и они устремляются к положительному полюсу источника питания. Однако на их пути встречаются стройные ряды кристаллических решёток, атомы которых создают препятствия упорядоченному движению, то есть оказывают сопротивление.

На преодоление сопротивления уходит часть энергии движущихся электронов. В соответствии с фундаментальным законом сохранения энергии, она не может бесследно исчезнуть. Она-то и превращается в тепло, вызывающее нагревание проводника. Накапливаемая тепловая энергия излучается в окружающее пространство или нагревает другие предметы, соприкасающиеся с проводником.

На рисунке 2 изображёна схема опыта, демонстрирующего закон теплового действия тока, разогревающего участок провода в электрической цепи.

Рис. 2. Тепловое действие тока

Явление нагревания проводников было известно практически с момента получения электротока, но исследователи не могли тогда объяснить его природу, и тем более, предложить способ оценки количества выделяемого тепла. Эту проблему решает закон  Джоуля-Ленца, которым мы пользуемся по сегодняшний день.

Практическая польза закона Джоуля-Ленца

Присильном нагревании можно наблюдать излучение видимого спектра света, чтопроисходит, например, в лампочке накаливания. Слабо нагретые тела тоже излучаюттепловую энергию, но в диапазоне инфракрасного излучения, которого мы не видим,но можем ощутить своими тепловыми рецепторами.

Допускать сильное нагревание проводников нельзя, так как чрезмерная температура разрушает структуру металла, проще говоря – плавит его. Это может привести к выводу из строя электрооборудования, а также стать причиной пожара. Для того, чтобы не допустить критических параметров нагревания необходимо делать расчёты тепловых элементов, пользуясь формулами, описывающими закон Джоуля-Ленца.

Проанализировав выражение U2/R убеждаемся, что когда сопротивление стремится к нулю, то количество выделенного тепла стремится к бесконечности. Такая ситуация возникает при коротких замыканиях. В это основная опасность КЗ.

В борьбе с короткими замыканиями используют:

  • автоматические выключатели:
  • электронные защитные блоки;
  • плавкие предохранители;
  • другие защитные устройства.

Применение и практический смысл

Непосредственноепревращение электричества в тепловую энергию нельзя назвать экономическивыгодным. Однако, с точки зрения удобства и доступности современногочеловечества к источникам электроэнергии различные нагревательные приборыпродолжают массово применяться как в быту, так и на производстве.

Перечислим некоторые из них:

  • электрочайники;
  • утюги;
  • фены;
  • варочные плиты;
  • паяльники;
  • сварочныеаппараты и многое другое.

На рисунке 3 изображены бытовые нагревательные приборы, которыми мы часто пользуемся.

Рис. 3. Бытовые нагревательные приборы

Использование тепловых мощностей в химической, металлургической и в других промышленных отраслях тесно связно с использованием электрической энергии.

Без знания физического закона Джоуля-Ленца было бы невозможно сконструировать безопасный нагревательный прибор. Для этого нужны расчёты, которые невозможно сделать без применения рассмотренных нами формул. На основе расчётов происходит выбор материалов с нужным удельным сопротивлением, влияющим на нагревательную способность устройств.

Закон Джоуля-Ленца без преувеличения можно назвать гениальным. Это один из тех законов, которые повлияли на развитие электротехники.

Источник: https://www.asutpp.ru/zakon-dzhoulya-lentsa.html

Закон Джоуля — Ленца определение и формулы

Знаменитый русский физик Ленц и английский физик Джоуль, проводя опыты по изучению тепловых действий электрического тока, независимо друг от друга вывели закон Джоуля-Ленца. Данный закон отражает взаимосвязь количества теплоты, выделяемого в проводнике, и электрического тока, проходящего по этому проводнику в течение определенного периода времени.

Свойства электрического тока

Когда электрический ток проходит через металлический проводник, его электроны постоянно сталкиваются с различными посторонними частицами. Это могут быть обычные нейтральные молекулы или молекулы, потерявшие электроны.

Электрон в процессе движения может отщепить от нейтральной молекулы еще один электрон. В результате, его кинетическая энергия теряется, а вместо молекулы происходит образование положительного иона.

В других случаях электрон, наоборот, соединиться с положительным ионом и образовать нейтральную молекулу.

В процессе столкновений электронов и молекул происходит расход энергии, в дальнейшем превращающейся в тепло. Затраты определенного количества энергии связаны со всеми движениями, во время которых приходится преодолевать сопротивление. В это время происходит превращение работы, затраченной на преодоление сопротивления трения, в тепловую энергию.

Сопротивление в электрических проводниках обладает теми же качествами, как и у обычного сопротивления. Для того чтобы провести ток через проводник, источником тока затрачивается определенное количество энергии, превращающейся в тепло.

Данное превращение как раз и отражает закон Джоуля – Ленца, известного также, как закон теплового действия тока.

Закон джоуля Ленца формула и определение

Согласно закону джоуля Ленца, электрический ток, проходящий по проводнику, сопровождается количеством теплоты, прямо пропорциональным квадрату тока и сопротивлению, а также времени течения этого тока по проводнику.

Цепи постоянного и переменного тока

В виде формулы закон Джоуля-Ленца выражается следующим образом: Q = I2Rt, в которой Q отображает количество выделенной теплоты, I – силу тока, R – сопротивление проводника, t – период времени.

Величина “к” представляет собой тепловой эквивалент работы и применяется в тех случаях, когда количество теплоты измеряется в калориях, сила тока – в амперах, сопротивление – в Омах, а время – в секундах.

Численное значение величины к составляет 0,24, что соответствует току в 1 ампер, который при сопротивлении проводника в 1 Ом, выделяет в течение 1 секунды количество теплоты, равное 0,24 ккал. Поэтому для расчетов количества выделенной теплоты в калориях применяется формула Q = 0,24I2Rt.

При использовании системы единиц СИ измерение количества теплоты производится в джоулях, поэтому величина “к”, применительно к закону Джоуля-Ленца, будет равна 1, а формула будет выглядеть: Q = I2Rt. В соответствии с законом Ома I = U/R. Если это значение силы тока подставить в основную формулу, она приобретет следующий вид: Q = (U2/R)t.

Основная формула Q = I2Rt очень удобна для использования при расчетах количества теплоты, которое выделяется в случае последовательного соединения. Сила тока во всех проводниках будет одинаковая.

При последовательном соединении сразу нескольких проводников, каждый из них выделит столько теплоты, которое будет пропорционально сопротивлению проводника. Если последовательно соединить три одинаковые проволочки из меди, железа и никелина, то максимальное количество теплоты будет выделено последней.

Это связано с наибольшим удельным сопротивлением никелина и более сильным нагревом этой проволочки.

При параллельном соединении этих же проводников, значение электрического тока в каждом из них будет различным, а напряжение на концах – одинаковым. В этом случае для расчетов больше подойдет формула Q = (U2/R)t.

Количество теплоты, выделяемое проводником, будет обратно пропорционально его проводимости.

Таким образом, закон Джоуля – Ленца широко используется для расчетов установок электрического освещения, различных отопительных и нагревательных приборов, а также других устройств, связанных с преобразованием электрической энергии в тепловую.

Токовая защита нулевой последовательности

Закон Джоуля-Ленца. Работа и мощность электрического тока

Источник: https://electric-220.ru/news/zakon_dzhoulja_lenca/2016-10-22-1093

Закон Джоуля-Ленца и его применение — УчительPRO

Раздел ОГЭ по физике: 3.9.Закон Джоуля-Ленца
Раздел ЕГЭ по физике: 3.2.8. Работа электрического тока. Закон Джоуля–Ленца

Рассмотрим Закон Джоуля-Ленца и его применение.

При прохождении электрического тока по проводнику он нагревается. Это происходит потому, что перемещающиеся под действием электрического поля свободные электроны в металлах и ионы в растворах электролитов сталкиваются с молекулами или атомами проводников и передают им свою энергию.

Таким образом, при совершении током работы увеличивается внутренняя энергия проводника, в нём выделяется некоторое количество теплоты, равное работе тока, и проводник нагревается: Q = А или Q = IUt.

 Учитывая, что U = IR, в результате получаем формулу:

Q = I2Rt , где

Q — количество выделяемой теплоты (в Джоулях)
I — сила тока (в Амперах)
R — сопротивление проводника (в Омах)
t — время прохождения (в секундах)

♦ Закон Джоуля–Ленца: количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока.

В XIX в. независимо друг от друга англичанин Д. Джоуль и россиянин Э.

Ленц изучали нагревание проводников при прохождении электрического тока и опытным путём обнаружили закономерность: количество теплоты, выделяющееся при прохождении тока по проводнику, равно произведению квадрата силы тока, сопротивления проводника и времени: Q = I2Rt  (в случае постоянных силы тока и сопротивления). Эту закономерность называют законом Джоуля-Ленца. Данный закон дает количественную оценку теплового действия электрического тока.

Применяя закон Ома, можно получить эквивалентные формулы: Q = IUt,  Q= U2t/R

Где применяется закон Джоуля-Ленца ?

1. Например, в лампах накаливания и в электронагревательных приборах применяется закон Джоуля-Ленца. В них используют нагревательный элемент, который является проводником с высоким сопротивлением. За счет этого элемента можно добиться локализованного выделения тепла на определенном участке. Выделение тепла будет появляться при повышении сопротивления, увеличении длины проводника, выбором определенного сплава.

2. Одной из областей применения закона Джоуля-Ленца является снижение потерь энергии. Тепловое действие силы тока ведет к потерям энергии.

При передаче электроэнергии, передаваемая мощность линейно зависит от напряжения и силы тока, а сила нагрева зависит от силы тока квадратично, поэтому если повышать напряжение, при этом понижая силу тока перед подачей электроэнергии, то это будет более выгодно.

Но повышение напряжения ведет к снижению электробезопасности. Для повышения уровня электробезопасности повышают сопротивление нагрузки соответственно повышению напряжения в сети.

3. Также закон Джоуля-Ленца влияет на выбор проводов для цепей. Потому что при неправильном подборе проводов возможен сильный нагрев проводника, а также его возгорание. Это происходит когда сила тока превышает предельно допустимые значения и выделяется слишком много энергии.

Нагревание проводов является вредным, поскольку приводит к потерям электроэнергии при передаче ее от источника к потребителю. Для уменьшения этих потерь силу тока уменьшают, повышая напряжение источника с тем, чтобы передаваемая мощность осталась прежней.

Чтобы избежать электрического пробоя изоляции проводов, их поднимают на большую высоту на мачтах высоковольтных линий электропередач, связывающих крупные электростанции с городами и поселками, отстоящими от них на десятки и сотни километров.

Вы смотрели конспект урока физики в 8 классе «Закон Джоуля-Ленца и его применение».
Выберите дальнейшие действия:

Источник: https://uchitel.pro/%D0%B7%D0%B0%D0%BA%D0%BE%D0%BD-%D0%B4%D0%B6%D0%BE%D1%83%D0%BB%D1%8F-%D0%BB%D0%B5%D0%BD%D1%86%D0%B0/

Работа и мощность электрического тока. Закон Джоуля-Ленца – FIZI4KA

ОГЭ 2018 по физике ›

1. Электрический ток, проходя по цепи, производит разные действия: тепловое, механическое, химическое, магнитное. При этом электрическое поле совершает работу, и электрическая энергия превращается в другие виды энергии: во внутреннюю, механическую, энергию магнитного поля и пр.

Как было показано, напряжение ​\( (U) \)​ на участке цепи равно отношению работы ​\( (F) \)​, совершаемой при перемещении электрического заряда ​\( (q) \)​ на этом участке, к заряду: ​\( U=A/q \)​. Отсюда ​\( A=qU \)​.

Поскольку заряд равен произведению силы тока ​\( (I) \)​ и времени ​\( (t) \)​ ​\( q=It \)​, то ​\( A=IUt \)​, т.е.

работа электрического тока на участке цепи равна произведению напряжения на этом участке, силы тока и времени, в течение которого совершается работа.

Единицей работы является джоуль (1 Дж). Эту единицу можно выразить через электрические единицы:

​\( [A] \)​= 1 Дж = 1 В · 1 А · 1 с

Для измерения работы используют три измерительных прибора: амперметр, вольтметр и часы, однако, в реальной жизни для измерения работы электрического тока используют счётчики электрической энергии.

Если нужно найти работу тока, но при этом сила тока или напряжение неизвестны, то можно воспользоваться законом Ома, выразить неизвестные величины и рассчитать работу по формулам: ​\( A=\frac{U2}{R}t \)​ или ​\( A=I2Rt \)​.

2. Мощность электрического тока равна отношению работы ко времени, за которое она совершена: ​\( P=A/t \)​ или ​\( P=IUt/t \)​; ​\( P=IU \)​, т.е. мощность электрического тока равна произведению напряжения и силы тока в цепи.

Единицей мощности является ватт (1 Вт): ​\( [P]=[I]\cdot[U] \)​; ​\( [P] \)​ = 1 А · 1 В = 1 Вт.

Используя закон Ома, можно получить другие формулы для расчета мощности тока: ​\( P=\frac{U2}{R};P=I2R \)​.

Значение мощности электрического тока в проводнике можно определить с помощью амперметра и вольтметра, измерив соответственно силу тока и напряжение. Можно для измерения мощности использовать специальный прибор, называемый ваттметром, в котором объединены амперметр и вольтметр.

3. При прохождении электрического тока по проводнику он нагревается.

Это происходит потому, что перемещающиеся под действием электрического поля свободные электроны в металлах и ионы в растворах электролитов сталкиваются с молекулами или атомами проводников и передают им свою энергию.

Таким образом, при совершении током работы увеличивается внутренняя энергия проводника, в нём выделяется некоторое количество теплоты, равное работе тока, и проводник нагревается: ​\( Q=A \)​ или ​\( Q=IUt \)​. Учитывая, что ​\( U=IR \)​, ​\( Q=I2Rt \)​.

Количество теплоты, выделяющееся при прохождении тока но проводнику, равно произведению квадрата силы тока, сопротивления проводника и времени.

Этот закон называют законом Джоуля-Ленца.

  • Примеры заданий
  • Ответы

Часть 1

1. Силу тока в проводнике увеличили в 2 раза. Как изменится количество теплоты, выделяющееся в нём за единицу времени, при неизменном сопротивлении проводника?

1) увеличится в 4 раза 2) уменьшится в 2 раза 3) увеличится в 2 раза

4) уменьшится в 4 раза

2. Длину спирали электроплитки уменьшили в 2 раза. Как изменится количество теплоты, выделяющееся в спирали за единицу времени, при неизменном напряжении сети?

1) увеличится в 4 раза 2) уменьшится в 2 раза 3) увеличится в 2 раза

4) уменьшится в 4 раза

3. Сопротивления резистор ​\( R_1 \)​ в четыре раза меньше сопротивления резистора ​\( R_2 \)​. Работа тока в резисторе 2

1) в 4 раза больше, чем в резисторе 1 2) в 16 раз больше, чем в резисторе 1 3) в 4 раза меньше, чем в резисторе 1

4) в 16 раз меньше, чем в резисторе 1

4. Сопротивление резистора ​\( R_1 \)​ в 3 раза больше сопротивления резистора ​\( R_2 \)​. Количество теплоты, которое выделится в резисторе 1

1) в 3 раза больше, чем в резисторе 2 2) в 9 раз больше, чем в резисторе 2 3) в 3 раза меньше, чем в резисторе 2

4) в 9 раз меньше, чем в резисторе 2

5. Цепь собрана из источника тока, лампочки и тонкой железной проволоки, соединенных последовательно. Лампочка станет гореть ярче, если

1) проволоку заменить на более тонкую железную 2) уменьшить длину проволоки 3) поменять местами проволоку и лампочку

4) железную проволоку заменить на нихромовую

6. На рисунке приведена столбчатая диаграмма. На ней представлены значения напряжения на концах двух проводников (1) и (2) одинакового сопротивления. Сравните значения работы тока ​\( A_1 \)​ и ​\( A_2 \)​ в этих проводниках за одно и то же время.

1) ​\( A_1=A_2 \)​
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)

7. На рисунке приведена столбчатая диаграмма. На ней представлены значения силы тока в двух проводниках (1) и (2) одинакового сопротивления. Сравните значения работы тока \( A_1 \)​ и ​\( A_2 \) в этих проводниках за одно и то же время.

1) ​\( A_1=A_2 \)​
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)

8. Если в люстре для освещения помещения использовать лампы мощностью 60 и 100 Вт, то

А. Большая сила тока будет в лампе мощностью 100 Вт.
Б. Большее сопротивление имеет лампа мощностью 60 Вт.

Верным(-и) является(-ются) утверждение(-я)

1) только А 2) только Б 3) и А, и Б

4) ни А, ни Б

9. Электрическая плитка, подключённая к источнику постоянного тока, за 120 с потребляет 108 кДж энергии. Чему равна сила тока в спирали плитки, если её сопротивление 25 Ом?

1) 36 А 2) 6 А 3) 2,16 А

4) 1,5 А

10. Электрическая плитка при силе тока 5 А потребляет 1000 кДж энергии. Чему равно время прохождения тока по спирали плитки, если её сопротивление 20 Ом?

1) 10000 с 2) 2000 с 3) 10 с

4) 2 с

11. Никелиновую спираль электроплитки заменили на нихромовую такой же длины и площади поперечного сечения. Установите соответствие между физическими величинами и их возможными изменениями при включении плитки в электрическую сеть. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА A) электрическое сопротивление спирали Б) сила электрического тока в спирали

B) мощность электрического тока, потребляемая плиткой

ХАРАКТЕР ИЗМЕНЕНИЯ 1) увеличилась 2) уменьшилась

3) не изменилась

12. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются. Запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ A) работа тока Б) сила тока

B) мощность тока

ФОРМУЛЫ
1) ​\( \frac{q}{t} \)​
2) ​\( qU \)​
3) \( \frac{RS}{L} \)​
4) ​\( UI \)​
5) \( \frac{U}{I} \)​

Часть 2

13. Нагреватель включён последовательно с реостатом сопротивлением 7,5 Ом в сеть с напряжением 220 В. Каково сопротивление нагревателя, если мощность электрического тока в реостате составляет 480 Вт?

Ответы

Источник: https://fizi4ka.ru/ogje-2018-po-fizike/rabota-i-moshhnost-jelektricheskogo-toka-zakon-dzhoulja-lenca.html

Формула заряда q: нахождения величины заряда и количество заряда

Электрический заряд – это основа работы любого электронного прибора и та величина, без которой невозможно посчитать ни один важный показатель в электродинамике и электростатике. Подробная расшифровка термина, описание формулы нахождения электрического заряда и образец решения типовой задачи приведены в данной статье.

Что такое электрический заряд q

Электрический заряд, обозначаемый в международной системе единиц буквами q и Q, считается скалярной физической величиной, которая определяет свойство частицы или тела выступать в качестве источника электромагнитного поля и вступать в прямое взаимодействие с ним. В физике существует несколько видов электромагнитных заряженных частиц, и они называются положительными или отрицательными. Обе единицы измеряются в Кулонах, а найти их можно путём вычисления произведения одного Ампера с одной секундой.

Понятие из учебного пособия

Формула нахождения заряда

Определить искомую величину можно из физико-математической формулы силы тока. В соответствии с ней, нужно перемножить силу тока на время его прохождения по проводнику. Количество заряда можно узнать через формулу +-ne, где n служит целым числом, а е равно значению = -1,6*10-19 Кулон.

Обратите внимание! Формула заряда является следствием прямой зависимости напряженности электромагнитного поля от потенциала его частицы, что является основным правилом нахождения емкости заряженного конденсатора и величины энергии, накопленной в нём. Кроме того, вычислить количество заряда можно через силу Лоренца.

Основные формулы

Как вычислять с помощью законов

Поскольку q и Q являются скалярными единицами, вычислить их с помощью законов можно через точные формулы, выведенные известными учеными-физиками. К примеру, в соответствии с законом Кулона, можно найти величину и силовое направление взаимодействия заряженных частиц между несколькими неподвижными телами.

Вам это будет интересно  Особенности измерения яркости света

Закон сохранения

Все элементарные частицы подразделяются на нейтральные или заряженные. Они вступают во взаимодействие друг с другом внутри электромагнитного поля. Частицы, которые имеют одноименный электрон, отталкиваются, а разноименный – притягиваются. В первом случае наблюдается избыток электронов, а во втором – их недостаток.

Оба типа частиц заряжаются посредством электризации. На практике, при возникновении данного явления, заряженные частицы равны по модулю, несмотря на противоположность знаков. Когда разные частицы притягиваются, то между ними происходит электризация и сохранение электрона.

При этом, сумма всех изолированных системных частиц не изменяется, то есть, q + q + q= const.

Закон сохранения

Закон Кулона

Выше было сказано, что электрические заряженные микрочастицы бывают как положительными, так и отрицательными, а их наличие подтверждается силовым взаимодействием, которое с помощью экспериментов на весах описал в 1785 году О. Кулон, создав свой физико-математический закон.

Закон Кулона представляет собой физическую закономерность, которая описывает взаимодействие наэлектризованных частиц между не электризованными, в зависимости от промежутка между ними. В соответствии с этой формулировкой, чем больше электронов имеет частица, тем ближе она расположена к другой элементарной единице заряда, и, соответственно, сила возрастает.

Обратите внимание! При увеличении расстояния между частицами, сал их взаимодействия неизменно убывает. В математической формуле это выглядит так: F1 = F2 = K*(q1*q2/r2), где q1 и q2 считаются модулями заряженных микрочастиц, k является коэффициентом пропорциональности, который зависит от системного выбора единицы, а r — расстоянием.

Закон Кулона

Образец решения задач по теме «Электрический заряд»

Ниже приведены образцы решения простых задач по электростатике, в частности, на закон Кулона.

Задача 1. Несколько одинаковых заряженных шаров имеют показатели q1 = 6 микрокулон и q2 = -18 микрокулон. Они располагаются друг от друга на 36 сантиметров (0,36 метров). Насколько будет меняться сила их взаимодействия при соприкосновении друг с другом и разведении в сторону?

Вам это будет интересно  Обозначение разного электрооборудованья на схемах

Чтобы решить эту задачу, нужно воспользоваться эл заряд формулой F=K*(q1*q2/r2), подставив вместо букв известные величины. В результате, выйдет число 7,5.

Задача 2. Маленькие одинаковые шары находятся на промежутке в 0,15 метра и притягиваются с силой 1 микроньютон. Задача состоит в определении первоначальных зарядов шаров.

Чтобы решить вторую задачу, нужно использовать ту же формулу Кулона, но немного видоизмененную: F=kq2/r2. Затем вывести из правила показатель q2. Он будет равен Fr2/k. Подставив известные значения и выполнив несложные расчеты, получится цифры в 10-7 или 10 микрокулон.

Формула для решения

В целом, электрический заряд представляет собой физическую скалярную величину, которая определяет способность тел являться источником электромагнитного поля и участвовать во взаимодействии с ним. Отыскать величину, которая обозначается буквами q и Q, для решения задач или для выполнения другой работы, можно через закон сохранения, Кулона и представленные выше основные физические формулы.

Источник: https://rusenergetics.ru/polezno-znat/formula-zaryada

Cила тока: формула

  • 1 Как возникает
  • 2 Определение
  • 3 Виды
  • 4

Понятие о силе тока является основой современной электротехники. Без этих базовых знаний невозможно сделать расчеты к схемам, выполнить действия по электрике, предотвратить, выявить и устранить повреждение в цепи.

Определение силы тока через заряд

Как возникает

Для понимания, что такое сила тока, следует знать условие его возникновения –  существование частиц со свободным зарядом. Он перемещается через проводник (его поперечное сечение) от одной точки к другой. Физика силы тока заключается в упорядоченном движении электронов, на которые действует электрическое поле от источника питания. Чем большее количество заряженных частиц переносится, и чем быстрее их передвижение в одном направлении, тем больший заряд дойдет до места назначения.

Движение электронов в проводнике

Помимо источника питания, элементами замкнутой цепи являются соединительные провода, по которым проходит электричество, и потребители энергии (установки, резисторы).

Дополнительная информация. В проводниках из металла в роли передатчика зарядов выступают электроны, газообразных – ионы,  жидких – перенесение заряженных частиц выполняется с помощью обоих видов частиц. Нарушение порядка прохождения говорит о хаотичном движении зарядов, цепь при котором станет обесточенной.

Определение

Сила тока в проводнике – это количество электричества, перемещаемое через поперечное сечение за единичный интервал времени. Чтобы увеличить данное значение, нужно изъять из схемы лампу либо повысить магнитное поле, создаваемое батарейкой.

Подключаем трансформатор тока

Единицей измерения силы электрического тока по международной системе СИ (Systеme International) считается ампер (А), названный по фамилии выдающегося французского научного деятеля XIX века Андре-Мари Ампера.

Дополнительная информация. Ампер – достаточно внушительная  электрическая мера. Для жизни человека представляет смертельную опасность токовая величина до 0,1A. Горящая бытовая лампочка на 100 Вт пропускает электричество примерно в 0,5 А. В комнатном обогревателе это значение доходит до 10 А, портативному калькулятору будет достаточной одна тысячная доля ампера.

В электротехнической практике замеры малых величин могут выражаться в микро,- и миллиамперах.

Силу тока находят измерительным приспособлением (ампер,- или гальванометром), последовательно включая его в нужный участок цепи. Малые величины измеряют микро,- или миллиамперметром. Основными методами нахождения количества электричества при помощи приборов являются:

  • Магнитоэлектрический – при неизменной токовой величине. Такой способ отличают повышенная точность и малое потребление энергии;
  • Электромагнитный – для стационарных и изменяющихся величин. При использовании этого метода сила тока в цепи находится в результате преобразования магнитного поля в выходной сигнал модуляционного датчика;
  • Косвенный – основан на замере напряжения при известном сопротивлении. Далее вычисляют искомую величину по закону Ома, показанному ниже.

Формула и чтение закона Ома

Согласно определению, силу тока (I) можно найти по формуле:

I = q/t, где:

  • q – заряд, идущий поперек проводника (Кл);
  • t – длительность времени, затраченного на перемещение частиц (с).

Формула силы тока читается следующим образом: необходимая величина I – это отношение прошедшего через проводник заряда к используемому отрезку времени.

Обратите внимание! Сила тока определяется не только через заряд, но и расчетными формулами на основе закона Ома, который гласит: сила электричества прямо пропорциональна напряжению проводника и обратно пропорциональна его сопротивлению.

Формула закона Ома поможет найти силу тока, которая выглядит отношением:

I = U / R, здесь:

  • U – напряжение (В);
  • R – сопротивление (Ом).

Эта установленная связь физических величин используется для различных расчетов:

  • учитывающих характеристики источника питания;
  • для вычислений в цепях токов любого направления;
  • для многофазных цепей.

Обратите внимание! Если проводники соединяются последовательным способом, то электричество каждого из них равно. Параллельное соединение предусматривает количество амперов, которое складывается из суммы токовых значений каждого проводника.

Как найти мощность (скорость передачи или преобразования энергии) с помощью токового значения? Для этого нужно воспользоваться формулой:

Р = U*I, где умножаемые значения упоминались выше.

Виды

Как работает и как выбрать трансформатор тока

При постоянном и переменном электричестве его сила бывает разного характера. Для цепи с движением частиц в постоянном направлении все параметры остаются неизменными. Переменный вид способен менять свою величину при одном и том же или меняющемся направлении. Количество электричества при этом бывает:

  • мгновенным, зависящим от амплитудной величины и частоты колебаний, связанной с угловой частотой;
  • амплитудным – максимальным значением мгновенной силы тока за определенный период;
  • эффективным – при превращении энергии количество теплоты от обоих видов тока одинаково.

Электросети бытового назначения пропускают переменный ток, преобразующийся в постоянный при прохождении через блок питания электроприбора (компьютера, телевизора).

Величина силы тока – понятие, тесно связанное с электрической энергией, имеющей огромное значение для сферы быта, народного хозяйства, объектов стратегического назначения. Более того, электроэнергетика является экономической основой государства и определяющим вектором развития внутри страны и на международном уровне.

Генератор тока переменного

Источник: https://amperof.ru/elektroenergia/cila-toka-formula.html

Понравилась статья? Поделиться с друзьями:
ЭлектроМастер
Как закрепить сип на стене дома

Закрыть