Как разбираться в электронике

Инструкция: как разобраться в многообразии бытовой техники и сделать правильный выбор

как разбираться в электронике

Первое, что стоит сделать перед выбором новой техники, это перечислить базовые и дополнительные функции, которыми она должна обладать. В случае с гаджетами, которые вы покупаете на замену устаревшим или вышедшим из строя, сделать это проще – у вас уже есть навык управления нужным типом девайсов.

Немного сложнее сделать выбор, если такого навыка у вас нет – например, вы впервые покупаете мультиварку. В этом случае нелишним будет ознакомиться с профессиональными обзорами, которые призваны описать основные принципы работы прибора, перечислить его характеристики и рассказать о специфике владения им.

Примеры таких обзоров можно найти на сайте «М.Вкус». 

Шаг 2: определитесь с местом для техники и её размером

Размер модели – это, пожалуй, одна из немногих переменных, которая сужает фрагмент поиска. Вне зависимости от того, идёт ли речь о встраиваемой или отдельно стоящей технике, её размер строго определён будущим местом функционирования или хранения.

Так, почти все приборы для кухни выбираются в соответствии с пропорциями кухонного гарнитура, а мобильные бытовые гаджеты вроде пылесоса – исходя не только из потребностей, но и места хранения.

Продумав место постоянной дислокации техники, вы сможете быстрее сделать выбор в магазине.

Шаг 3: проконсультируйтесь

Для того чтобы задать вашему поиску верное направление, стоит провести очную или онлайн-консультацию со специалистом нужной вам категории. Лучше всего – в магазине с хорошей репутацией и длительным сроком работы. Так, специалисты «М.

» смогут не только подробно рассказать о конкретных моделях, но и сделать обзор рынка в целом – они проинформируют о новых материалах и инновационных технологиях в категории.

Обладая этими знаниями, вы сможете понять ценообразование в категории, а значит, прийти к выводу, что вариант с высокой стоимостью может быть более выгодной инвестицией, чем его менее дорогой, но технически устаревший собрат.

Шаг 4: определите круг производителей

Источник: https://mvkus.mvideo.ru/advices/house/kak-razobratsya-v-mnogoobrazii-bytovoy-tekhniki-i-sdelat-pravilnyy-vybor-/

Как работает транзистор: простым языком для чайников, схемы

как разбираться в электронике

Принцип полупроводникового управления электрическим током был известен ещё в начале ХХ века. Несмотря на то, что инженеры, работающие в областях радиоэлектроники, знали как работает транзистор, они продолжали конструировать устройства на основе вакуумных ламп. Причиной такого недоверия к полупроводниковым триодам было несовершенство первых точечных транзисторов. Семейство германиевых транзисторов не отличались стабильностью характеристик и сильно зависели от температурных режимов.

Серьёзную конкуренцию электронным лампам составили монолитные кремниевые транзисторы лишь в конце 50-х годов. С этого времени электронная промышленность начала бурно развиваться, а компактные полупроводниковые триоды активно вытесняли энергоёмкие лампы со схем электронных приборов. С появлением интегральных микросхем, где количество транзисторов может достигать миллиардов штук, полупроводниковая электроника одержала убедительную победу в борьбе за миниатюризацию устройств.

Что такое транзистор?

В современном значении транзистором называют полупроводниковый радиоэлемент, предназначенный для изменения параметров электрического тока и управления им. У обычного полупроводникового триода имеется три вывода: база, на которую подаются сигналы управления, эмиттер и коллектор. Существуют также составные транзисторы большой мощности.

Поражает шкала размеров полупроводниковых устройств – от нескольких нанометров (бескорпусные элементы, используемые в микросхемах), до сантиметров в диаметре мощных транзисторов, предназначенных для энергетических установок и промышленного оборудования. Обратные напряжения промышленных триодов могут достигать до 1000 В.

Устройство

Конструктивно триод состоит из полупроводниковых слоев, заключённых в корпусе. Полупроводниками служат материалы на основе кремния, германия, арсенида галлия и других химических элементов. Сегодня проводятся исследования, готовящие на роль полупроводниковых материалов некоторые виды полимеров, и даже углеродных нанотрубок. Видимо в скором будущем мы узнаем о новых свойствах графеновых полевых транзисторов.

Раньше кристаллы полупроводника располагались в металлических корпусах в виде шляпок с тремя ножками. Такая конструкция была характерна для точечных транзисторов.

Сегодня конструкции большинства плоских, в т. ч. кремниевых полупроводниковых приборов выполнены на основе легированного в определённых частях монокристалла. Они впрессованы в пластмассовые, металлостеклянные или металлокерамические корпуса. У некоторых из них имеются выступающие металлические пластины для отвода тепла, которые крепятся на радиаторы.

Электроды современных транзисторов расположены в один ряд. Такое расположение ножек удобно для автоматической сборки плат. Выводы не маркируются на корпусах. Тип электрода определяется по справочникам или путём измерений.

Для транзисторов используют кристаллы полупроводников с разными структурами, типа p-n-p либо n-p-n. Они отличаются полярностью напряжения на электродах.

Схематически строение транзистора можно представить в виде двух полупроводниковых диодов, разделённых дополнительным слоем. (Смотри рисунок 1). Именно наличие этого слоя позволяет управлять проводимостью полупроводникового триода.

Рис. 1. Строение транзисторов

На рисунке 1 схематически изображено строение биполярных триодов. Существуют ещё класс полевых транзисторов, о которых речь пойдёт ниже.

Базовый принцип работы

В состоянии покоя между коллектором и эмиттером биполярного триода ток не протекает. Электрическому току препятствует сопротивление эмиттерного перехода, которое возникает в результате взаимодействия слоёв. Для включения транзистора требуется подать незначительное напряжение на его базу.

На рисунке 2 показана схема, объясняющая принцип работы триода.

Рис. 2. Принцип работы

Управляя токами базы можно включать и выключать устройство. Если на базу подать аналоговый сигнал, то он изменит амплитуду выходных токов. При этом выходной сигнал точно повторит частоту колебаний на базовом электроде. Другими словами, произойдёт усиление поступившего на вход электрического сигнала.

Таким образом, полупроводниковые триоды могут работать в режиме электронных ключей или в режиме усиления входных сигналов.

Работу устройства в режиме электронного ключа можно понять из рисунка 3.

Рис. 3. Триод в режиме ключа

Обозначение на схемах

Общепринятое обозначение: «VT» или «Q», после которых указывается позиционный индекс. Например, VT 3. На более ранних схемах можно встретить вышедшие из употребления обозначения: «Т», «ПП» или «ПТ». Транзистор изображается в виде символических линий обозначающих соответствующие электроды, обведённые кружком или без такового. Направление тока в эмиттере указывает стрелка.

На рисунке 4 показана схема УНЧ, на которой транзисторы обозначены новым способом, а на рисунке 5 – схематические изображения разных типов полевых транзисторов.

Рис. 4. Пример схемы УНЧ на триодах

Виды транзисторов

По принципу действия и строению различают полупроводниковые триоды:

  • полевые;
  • биполярные;
  • комбинированные.

Эти транзисторы выполняют одинаковые функции, однако существуют различия в принципе их работы.

Полевые

Данный вид триодов ещё называют униполярным, из-за электрических свойств – у них протекает ток только одной полярности. По строению и типу управления эти устройства подразделяются на 3 вида:

  1. Транзисторы с управляющим p-n переходом (рис. 6).
  2. С изолированным затвором (бывают со встроенным либо с индуцированным каналом).
  3. МДП, со структурой: металл-диэлектрик-проводник.

Отличительная черта изолированного затвора – наличие диэлектрика между ним и каналом.

Детали очень чувствительны к статическому электричеству.

Схемы полевых триодов показано на рисунке 5.

Рис. 5. Полевые транзисторыРис. 6. Фото реального полевого триода

Обратите внимание на название электродов: сток, исток и затвор.

Полевые транзисторы потребляют очень мало энергии. Они могут работать больше года от небольшой батарейки или аккумулятора. Поэтому они нашли широкое применение в современных электронных устройствах, таких как пульты дистанционного управления, мобильные гаджеты и т.п.

Биполярные

Об этом виде транзисторов много сказано в подразделе «Базовый принцип работы». Отметим лишь, что название «Биполярный» устройство получило из-за способности пропускать заряды противоположных знаков через один канал. Их особенностью является низкое выходное сопротивление.

Транзисторы усиливают сигналы, работают как коммутационные устройства. В цепь коллектора можно включать достаточно мощную нагрузку. Благодаря большому току коллектора можно понизить сопротивление нагрузки.

Более детально о строении и принципе работы рассмотрим ниже.

Комбинированные

С целью достижения определённых электрических параметров от применения одного дискретного элемента разработчики транзисторов изобретают комбинированные конструкции. Среди них можно выделить:

  • биполярные транзисторы с внедрёнными и их схему резисторами;
  • комбинации из двух триодов (одинаковых или разных структур) в одном корпусе;
  • лямбда-диоды – сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением;
  • конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом (применяются для управления электромоторами).

Комбинированные транзисторы – это, по сути, элементарная микросхема в одном корпусе.

Как работает биполярный транзистор? Инструкция для чайников

Работа биполярных транзисторов основана на свойствах полупроводников и их сочетаний. Чтобы понять принцип действия триодов, разберёмся с поведением полупроводников в электрических цепях.

Полупроводники.

Некоторые кристаллы, такие как кремний, германий и др., являются диэлектриками. Но у них есть одна особенность – если добавить определённые примеси, то они становятся проводниками с особыми свойствами.

Одни добавки (доноры) приводят к появлению свободных электронов, а другие (акцепторы) – образуют «дырки».

Источник: https://www.asutpp.ru/kak-rabotaet-tranzistor.html

Электротехника для начинающих

как разбираться в электронике

Понятно желание людей любого возраста постичь такую науку, как электротехника. Помогут в этом основы электротехники для всех начинающих. В интернете и печати публикуется масса материалов, часто под заглавием «Электротехника для чайников». Начинать нужно с усвоения положений и законов электричества.

Учебное пособие по электротехнике

Понятия и свойства электрического тока

Начальные курсы электрика в первых главах дают определения понятию и свойствам электрического тока, объясняют природу и свойства электроэнергии, законы электричества и их основные формулы. Основываясь на великих открытиях, зарождалась и получила грандиозное развитие такая научная дисциплина, как электротехника. Сущность электричества заключена в направленном перемещении электронов (заряженных частиц). Они переносят электрический заряд в теле металлических проводов.

Важно! Для транзита электрической энергии используют провода, жилы которых сделаны из алюминия или меди. Это самые экономичные проводные металлы. Делать жилы проводов из других материалов дорого, поэтому невыгодно.

Ток бывает постоянного и переменного направления. Постоянное движение энергии всегда осуществляется в одном направлении. Переменный энергетический поток ритмично меняет свою полярность. Скорость, с которой меняется направление движения электронов, называют частотой. Её измеряют в герцах.

Что изучает электротехника

Электроэнергетика и электротехника

Основа электрики формировалась в XIX веке. Те времена называют эпохой грандиозных открытий основополагающих законов, дающих все представления об электричестве. Электротехника (ЭТ) как наука начинала делать свои первые шаги. Теория стала подкрепляться практикой. Появились первые электротехнические устройства, совершенствовались коммуникационные системы доставки электроэнергии от источника потребителю.

Базой развития электротехники стали достижения в области физики, химии и математики. Новая наука изучала свойства электрического тока, природу электромагнитных излучений и другие процессы. По мере накопления знаний ЭТ становилась наукой прикладного характера.

Современная научная дисциплина изучает устройства, в которых используется электрический ток. На основании исследований создаются новые более совершенные электротехнические установки, приборы и устройства. ЭТ – одна из передовых наук, являющаяся одним из основных двигателей прогресса человеческой цивилизации.

С чего начать изучение основ электротехники

Радиотехника для начинающих

Электротехника для начинающих доступна на многих информационных носителях. Современные средства массовой информации не испытывают дефицита в учебных пособиях по основам электричества. Самоучители по электрике приобретают в сети интернет или книжных магазинах. Уроки электрика новичок может получить в виде бесплатного видеокурса об основах электричества через интернет. Онлайн видео лекции в доступной форме обучают всех желающих основам электричества.

Обратите внимание! Книга, несмотря на доступные видеоресурсы в сети, до сих пор считается самым удобным источником информации. Пользуясь самоучителем по электрике с нуля, не нужно всё время включать ПК. Учебник всегда будет под рукой.

Самоучители служат незаменимыми помощниками для того, чтобы отремонтировать электропроводку, починить выключатель, розетку, установить датчик движения и заменить предохранители в бытовых электроприборах.

Основные характеристики тока

К основным характеристикам относятся сила тока, напряжение, сопротивление и мощность. Параметры электрического тока, протекающего по проводу, характеризуются именно этими величинами.

Сила тока

Параметр означает количество заряда, проходящего по проводу, за определённое время. Силу тока измеряют в амперах.

Напряжение

Это есть не что иное, как разница потенциалов между двумя точками проводника. Величина измеряется в вольтах. Один вольт – эта разность потенциалов, при которой для переноса заряда в 1 кулон потребуется произвести работу, равную одному джоулю.

Сопротивление

Этот параметр измеряется в омах. Его величина определяет сопротивление энергопотоку. Чем больше масса и площадь поперечного сечения проводника, тем больше сопротивление. Оно также зависит от материала и длины провода. При разнице потенциалов на концах проводника в 1 Вольт и силе тока 1 Ампер сопротивление проводника равно 1 Ому.

Мощность

Физическая величина выражает скорость протекания электроэнергии в проводнике. Мощность тока определяется произведением силы тока и напряжения. Единица мощности – ватт.

Закон Ома

Постижение основ электротехники нужно начинать с закона Ома. Именно он является фундаментом всей науки об электричестве. Выдающийся немецкий физик Георг Симон Ом в 1826 году сформулировал закон, в котором определяет взаимозависимость трёх основных параметров электрического тока: силы, напряжения и сопротивления.

Энергия и мощность в электротехнике

Электрика для начинающих даёт разъяснения терминов энергии и мощности. Эти характеристики напрямую связаны с законом Ома. Энергия может перетекать из одной в другую форму. То есть она может быть ядерной, механической, тепловой и электрической.

В динамиках звуковых устройств потенциал электрического тока преобразовывается в энергию звуковых волн. В электродвигателях токовый энергопоток превращается в механическую энергию, которая заставляет вращаться ротор мотора.

Любые электрические устройства потребляют нужное количество электроэнергии в течение определённого временного промежутка. Количество потреблённой энергии в единицу времени является мощностью потребителя электричества. Более подробное толкование мощности можно найти в главах учебного пособия, посвящённых электромеханике для начинающих.

Мощность определяют по формуле:

N = I x U.

Измеряется этот параметр в ваттах. Единица измерения мощности Ватт означает, что ток силой в один Ампер перемещается под напряжением 1 Вольт. При этом сопротивление проводника равно 1-му Ому. Такая трактовка характеристики тока наиболее понятна для начинающих постигать основы электричества.

Электротехника и электромеханика

Электрическая механика – это раздел электротехники. Эта научная дисциплина изучает принципиальные схемы оборудования, двигателей и прочих приборов, использующих электрическую энергию.

Пройдя курс электромеханики для начинающих, новички могут самостоятельно научиться ремонтировать бытовые электрические устройства и приборы. Основные законы электромеханики дают возможность понять, как устроен электродвигатель, чем отличается трансформатор от стабилизатора, что такое генератор и многое другое.

ЭТО ИНТЕРЕСНО:  График ппр что это

Стенд для изучения основ электромеханики

Дополнительная информация. Несомненную пользу новичкам принесут учебные пособия и видео курсы по электротехнике и электромеханике. Если есть друзья или знакомые, разбирающиеся в этом деле, то это только поможет быстро освоить азы этих дисциплин.

Безопасность и практика

Основы электротехники для начинающих делают особое ударение на правилах техники безопасности. Их несоблюдение на практике порой может стать причиной получения электротравм и повреждения имущества. Для новичков в электротехнике надо следовать четырём основным требованиям ТБ.

Четыре правила техники безопасности для новичков:

  1. Перед работой с каким-либо устройством или оборудованием следует ознакомиться с его документацией. Все руководства по эксплуатации имеют раздел безопасности. В нём описаны опасные действия, которые могут вызвать короткое замыкание или удар электрическим током.
  2. Прежде, чем приступать к работе с электротехническими устройствами или электропроводкой, нужно отключить электричество. Затем произвести осмотр состояния изоляции проводников. Если обнаружено нарушение изоляционного покрытия, то оголённую часть проводников надо покрыть отрезком изоляционной ленты.
  3. При работе с проводкой и оборудованием под напряжением бытовой электросети надо использовать диэлектрические перчатки, защитные очки и обувь на толстой резиновой подошве. В электрораспределительных шкафах, щитах и электроустановках новичкам вообще делать нечего. Ими занимаются квалифицированные электрики, которые имеют допуск к работе под напряжением.
  4. Ни в коем случае нельзя касаться оголённых проводников руками. Для этого есть отвёртки-пробники, мультиметры и другие электроизмерительные приборы. Только убедившись в отсутствии напряжения, можно касаться проводов.

Электрика для чайников

Электроника окружает человека в виде различных устройств и приборов. Современная бытовая техника в большинстве своём управляется с помощью электронных схем. Курсы обучения основам электроники для начинающих нацелены на то, чтобы новичок мог отличать транзистор от резистора и понимать, как и для чего служит та или иная электронная схема.

Учебник по электронике для новичков

Учебные пособия и видеокурсы способствуют пониманию принципов построения электронных схем. Что такое печатная плата, как создать схему своими руками – на все эти вопросы отвечают основы электроники для новичков. Усвоив азы электроники, домашний «мастер» сможет определить вышедшую из строя радиодеталь в телевизоре, аудио устройстве и другой бытовой технике и заменить её. Кроме этого, новичок приобретёт опыт работы с паяльником.

Электронная схема усилителя звука

курсы, печатная продукция несут в себе массу информации по освоению основ электротехники, электромеханики и электроники. Приобрести знания в этих сферах можно, не выходя из дома. Просмотреть нужное видео, заказать учебники позволяет доступность сети интернета.

Источник: https://amperof.ru/teoriya/elektrotexnika-dlya-nachinayushhix.html

Начинающим о радиодеталях | Мастер Винтик. Всё своими руками!

Для того, чтобы собрать схему какие только радиодетали и не понадобятся: резисторы (сопротивления), транзисторы, диоды, конденсаторы и т.п. Из многообразия радиодеталей надо уметь быстро отличить по внешнему виду нужную, расшифровать надпись на её корпусе, определить цоколёвку. Обо всём об этом и пойдёт речь ниже. 

Конденсатор

Эта деталь практически встречается в каждой схеме радиолюбительских конструкций. Как правило, самый простой конденсатор — это две металлические пластинки (обкладки) и воздух между ними в качестве диэлектрика. Вместо воздуха может быть фарфор, слюда или другой материал, не проводящий ток. Через конденсатор постоянный ток не проходит, а вот переменный ток через конденсатор проходит. Благодаря такому свойству конденсатор ставят там, где нужно отделить постоянный ток от переменного.

У конденсатора основной параметр — это ёмкость.

Единица ёмкости — микрофарада (мкФ) взята за основу в радиолюбительских конструкциях и в промышленной аппаратуре. Но чаще употребляется другая единица — пикофарада (пФ), миллионная доля микрофарады (1 мкф = 1 000 нф = 1 000 000 пф). На схемах вы встретите и ту, и другую единицу.

Причем емкость до 9100 пФ включительно указывают на схемах в пикофарадах или нанофарадах (9н1) , а свыше — в микрофарадах. Если, например, рядом с условным обозначением конденсатора написано «27», «510» или «6800», значит, емкость конденсатора соответственно 27, 510, 6800 пФ или n510 (0,51 нф = 510 пф или 6н8 = 6,8 нф = 6800пф).

А вот цифры 0,015, 0,25 или 1,0 свидетельствуют о том, что емкость конденсатора составляет соответствующее число микрофарад (0,015 мкф = 15 нф  = 15 000 пф).

Типы конденсаторов

Конденсаторы бывают постоянной и переменной емкости.

У переменных конденсаторов ёмкость изменяется при вращении выступающей наружу оси. При этом одна накладка (подвижная) находит на не подвижную не соприкасаясь с ней, в результате увеличивается ёмкость.

Кроме этих двух типов, в наших конструкциях используется еще одна разновидность конденсаторов — подстроечный. Обычно его устанавливают в то или иное устройство для того, чтобы при налаживании точнее подобрать нужную емкость и больше конденсатор не трогать.

В любительских конструкциях подстроечный конденсатор нередко используют как переменный — он более дешевле и доступнее.

Конденсаторы отличаются материалом между пластинами и конструкцией. Бывают конденсаторы воздушные, слюдяные, керамические и др. Эта разновидность постоянных конденсаторов — не полярные. Другая разновидность конденсаторов — электролитические (полярные).

Такие конденсаторы выпускают большой ёмкости — от десятой доли мкф до несколько десятков мкФ. На схемах для них указывают не только ёмкость, но и максимальное напряжение, на которое их можно использовать.

Например, надпись 10,0 x 25 В означает, что конденсатор емкостью 10 мкФ нужно взять на напряжение 25 В.

Для переменных или подстроечных конденсаторов на схеме указывают крайние значения ёмкости, которые получаются, если ось конденсатора повернуть от одного крайнего положения до другого или вращать вкруговую (как у подстроечных конденсаторов).

Например, надпись 10 — 240 свидетель­ствует о том, что в одном крайнем положении оси емкость конденсатора составляет 10 пФ, а в другом — 240 пФ.

При плавном повороте из одного положения в другое ёмкость конденсатора будет также плавно изменяться от 10 до 240 пФ или обратно — от 240 до 10 пФ.

Резистор

Надо сказать, что эту деталь, как и конденсатор, можно увидеть во многих самоделках. Представляет собой фарфоровую трубочку (или стержень), на которую снаружи напылена тончайшая пленка металла или сажи (углерода). На малоомных резисторах большой мощности сверху наматывается нихромовая нить.

Резистор обладает сопротивлением и используется для того, чтобы установить нужный ток в электрической цепи. Вспомните пример с резервуаром: изменяя диаметр трубы (сопротивление нагрузки), можно получить ту или иную скорость потока воды (электрический ток различной силы).

  Чем тоньше пленка на фарфоровой трубочке или стержне, тем больше сопротивление току.

Резисторы бывают постоянные и переменные

Из постоянных чаще всего используют резисторы типа МЛТ (металлизированное лакированное теплостойкое), ВС (влагостойкое сопротивление), УЛМ (углеродистое лакированное малогабаритное), из переменных — СП (сопротивление переменное) и СПО (сопротивление переменное объемное). Внешний вид постоянных резисторов показан на рис. ниже.

Резисторы различают по сопротивлению и мощности. Сопротивление, как Вы уже знаете, измеряют в омах (Ом), килоомах (кОм) и мегаомах (МОм). Мощность же выражают в ваттах и обозначают эту единицу буквами Вт. Резисторы разной мощности отличаются размерами. Чем больше мощность резистора, тем больше его размеры.

Сопротивление резистора проставляют на схемах рядом с его условным обозначением. Если сопротивление менее 1 кОм, цифрами указывают число ом без единицы измерения. При сопротивлении 1 кОм и более — до 1 МОм указывают число килоом и ставят рядом букву «к».

Сопротивление 1 МОм и выше выражают числом мегаом с добавлением буквы «М». Например, если на схеме рядом с обозначением резистора написано 510, значит, сопротивление резистора 510 Ом. Обозначениям 3,6 к и 820 к соответствует сопротивление 3,6 кОм и 820 кОм соответственно.

Надпись на схеме 1 М или 4,7 М означает, что используются сопротивления 1 МОм и 4,7 МОм.

В отличие от постоянных резисторов, имеющих два вывода, у переменных резисторов таких выводов три. На схеме указывают сопротивление между крайними выводами переменного резистора. Сопротивление же между средним выводом и крайними изменяется при вращении выступающей наружу оси резистора.

Причем, когда ось поворачивают в одну сторону, сопротивление между средним выводом и одним из крайних возрастает, соответственно уменьшаясь между средним выводом и другим крайним. Когда же ось поворачивают обратно, происходит обратное явление.

Это свойство переменного резистора используется, например, для регулирования громкости звука в усилителях, приемниках, телевизорах и т.п.

Полупроводниковые приборы

Их составляет целая группа деталей: диоды, стабилитроны, транзисторы. В каждой детали использован полупроводниковый материал, или проще полупроводник. Что это такое? Все существующие вещества можно условно разделить на три большие группы.

Одни из них — медь, железо, алюминий и другие металлы — хорошо проводят электрический ток — это проводники. Древесина, фарфор, пластмасса совсем не проводят ток. Они непроводники, изоляторы (диэлектрики). Полупроводники же занимают промежуточное положение между проводниками и диэлектриками.

Такие материалы проводят ток только при определенных условиях.

Диоды

У диода (см. рис. ниже) два вывода: анод и катод. Если подключить к ним батарею полюсами: плюс — к аноду, минус — к катоду, в направлении от анода к катоду потечет ток. Сопротивление диода в этом направлении небольшое.

Если же попытаться переменить полюсы батарей, то есть включить диод «наоборот», то ток через диод не пойдет. В этом направлении диод обладает большим сопротивлением. Если пропустить через диод переменный ток, то на выходе мы получим только одну полуволну — это будет хоть и пульсирующий, но постоянный ток.

Если переменный ток подать на четыре диода, включенные мостом, то мы получим уже две положительные полуволны.

Стабилитроны

Эти полупроводниковые приборы также имеют два вывода: анод и катод. В прямом направлении (от анода к катоду) стабилитрон работает как диод, беспрепятственно пропуская ток.

А вот в обратном направлении он вначале не пропускает ток (как и диод), а при увеличении подаваемого на него напряжения вдруг «пробивается» и начинает пропускать ток. Напряжение «пробоя» называют напряжением стабилизации. Оно будет оставаться неизменным даже при значительном увеличении входного напряжения.

Благодаря этому свойству стабилитрон находит применение во всех случаях, когда нужно получить стабильное напряжение питания какого-то устройства при колебаниях, например сетевого напряжения.

Транзисторы

Из полупроводниковых приборов транзистор (см. рис. ниже) наиболее часто применяется в радиоэлектронике. У него три вывода: база (б), эмиттер (э) и коллектор (к). Транзистор — усилительный прибор. Его условно можно сравнить с таким известным вам устройством, как рупор.

Достаточно произнести что-нибудь перед узким отверстием рупора, направив широкое в сторону друга, стоящего в нескольких десятках метров, и голос, усиленный рупором, будет хорошо слышен вдалеке. Если принять узкое отверстие за вход рупора-усилителя, а широкое — за выход, то можно сказать, что выходной сигнал в несколько раз больше входного.

Это и есть показатель усилительных способностей рупора, его коэффициент усиления.

Сейчас разнообразие выпускаемых радиодеталей очень богатое, поэтому на рисунках показаны не все их типы.

Но вернемся к транзистору. Если пропустить через участок база — эмиттер слабый ток, он будет усилен транзистором в десятки и даже сотни раз. Усиленный ток потечет через участок коллектор — эмиттер. Если транзистор прозвонить мультиметром база-эмиттер и база-коллектор, то он похож на измерение двух диодов.

В зависимости от наибольшего тока, который можно пропускать через коллектор, транзис­торы делятся на маломощные, средней и большой мощности. Кроме того, эти полупроводниковые приборы могут быть структуры р-п-р или n-р-п. Так различаются транзисторы с разным чередованием слоев полупроводниковых материалов (если в диоде два слоя материала, здесь их три).

Усиление транзистор не зависит от его   структуры.

А.Зотов

Литература: Б. С. Иванов, «ЭЛЕКТРОННЫЕ САМОДЕЛКИ»

П О П У Л Я Р Н О Е:

  • Самодельный станок для резки бумаги
  • Сегодня почти у каждого дома есть принтеры, лазерные или струйные.Иногда приходится распечатывать фотографии, карточки и т.п. на бумаге большего формата.После нужно будет ровно обрезать бумагу, точно по нужному размеру.Для этого не обязательно покупать станок, его можно сделать своими руками.Подробнее

  • Какое напряжение в розетке разных стран?
  • Адаптация импортных приборов под «нашу» сеть

    В ряде других стран, а также, например в США стандарт напряжения 100–127 В частотой 60 Гц. В нашей стране — 230 В частотой 50 Гц. Почему такая разница?Как адаптировать импортную технику, предназначенную для другого стандарта узнаем  в статье, ниже.Подробнее

  • Простая световая кисть своими руками
  • Среди фотографов очень большой интерес вызывает техника фотосъемки с инструментом «световая кисть» (или иногда говорят «светографика») — это редкая и необычная техника съёмки. Она заключается в высвечивании пучком света именно тех деталей нашей композиции, которые мы хотим получить на будущем изображении. Сегодня рассмотрим: как можно сделать для этой техники простую «световую кисть» своими руками.Подробнее

Популярность: 40 193 просм.

Источник: http://www.MasterVintik.ru/nachinayushhim-o-radiodetalyax/

Основы электротехники для начинающих

Существует множество понятий, которые нельзя увидеть собственными глазами и потрогать руками. Наиболее ярким примером служит электротехника, состоящая из сложных схем и малопонятной терминологии. Поэтому очень многие просто отступают перед трудностями предстоящего изучения этой научно-технической дисциплины. Получить знания в этой области помогут основы электротехники для начинающих.

Основные токовые величины

При возникновении в цепи электрического тока, происходит постоянный перенос заряда через поперечное сечение проводника. Величина заряда, перенесенная за определенную единицу времени, называется силой тока, измеряемой в амперах.

Для того чтобы создать и поддерживать движение заряженных частиц, необходимо воздействие силы, приложенной к ним в определенном направлении. В случае прекращения такого действия, прекращается и течение электрического тока. Такая сила получила название электрического поля, еще она известна как напряженность электрического поля.

Именно она вызывает разность потенциалов или напряжение на концах проводника и дает толчок движению заряженных частиц. Для измерения этой величины применяется специальная единица – вольт.

Существует определенная зависимость между основными величинами, отраженная в законе Ома, который будет рассмотрен подробно.

Важнейшей характеристикой проводника, непосредственно связанной с электрическим током, является сопротивление, измеряемое в омах. Данная величина является своеобразным противодействием проводника течению в нем электрического тока.

В результате воздействия сопротивления происходит нагрев проводника. С увеличением длины проводника и уменьшением его сечения, значение сопротивления увеличивается. Величина в 1 Ом возникает, когда разность потенциалов в проводнике составляет 1 В, а сила тока – 1 А.

Электрика для чайников: основы электроники

Источник: https://electric-220.ru/news/osnovy_ehlektrotekhniki_dlja_nachinajushhikh/2016-12-03-1133

Основы электроники. Урок №1: Начало

Давайте для начала рассмотрим обычную пальчиковую батарейку. На ее этикетке вы можете прочитать, что она имеет напряжение 1,5 вольта так ли это на самом деле? Давайте проверим!

Для того чтобы это выяснить нам понадобится цифровой мультиметр. Для начала стоит приобрести недорогую модель, обязательно с ручным выбором диапазона измерения.

Как проверить напряжение мультиметром

  • черный провод мультиметра необходимо подключить к разъему „COM”;
  • красный провод необходимо подключить к разъему для измерения напряжения „V” (Внимание! Подключение проводов иным образом может привести к повреждению прибора!)
  • мы ожидаем получить значение около 1,5 вольта, поэтому ручку мультиметра устанавливаем на значение «20» в области DCV или V- (буква V с тире, означает постоянный ток) и если это необходимо, включаем прибор (некоторые модели включаются при повороте ручки), при этом мультиметр должен показать 0;
  • металлическими наконечниками щупов мультиметра касаемся выводов батарейки но какой куда? Попробуйте обе комбинации – результат должен быть один и тот же, только в одном случае будет отражаться положительное число, а в другом случае то же число, но только со знаком минус.
  • считываем значение – в нашем случае напряжение новой батарейки составляет 1,62 вольт;
  • выключаем мультиметр.

ВНИМАНИЕ! Во время проведения измерений, чтобы не повредить мультиметр, всегда выбирайте диапазон измерения большее максимально ожидаемого результата! Если мы не знаем чего ожидать, то безопаснее будет выбрать более высокий диапазон и в дальнейшем уменьшить его для получения максимально точного результата.

Поскольку мы научились измерять напряжение мультиметром, то давайте померим и другие батарейки/аккумуляторы! Мы для тестирования выбрали:

  • заряженный аккумулятор 1,2 вольта, размер АА — мультиметр показал 1,34 вольт.
  • частично разряженный аккумулятор Ni-Mh (используемый в камере) — мультиметр наш показал 1,25 вольт.

Далее нам понадобятся 4 батарейки формата ААА, кассета для 4 батареек и макетная плата (что такое макетная плата и как ею пользоваться можно узнать здесь). Установим наши 4 батарейки в кассету. Затем концы проводов кассеты вставим в отверстия макетной платы так, как это показано на следующих фото:

Следующим шагом будет подготовка соединительных проводов (перемычек), их еще называют джамперами. Это такие провода, которые будут объединять отдельные радиодетали между собой на макетной плате.

Конечно же, какое-то количество джамперов входит в комплект вместе с макетной платой. Но если их у вас нет, то не беда, их можно сделать самим.

Для этого нам понадобится: компьютерный кабель, так называемая витая пара, ножницы или острый нож.

Для начала необходимо снять изоляцию с кабеля. Внутри кабеля мы видим скрученные между собой тонкие провода. Следующим шагом будет нарезка проводов необходимой длинны. И последнее что необходимо – это зачистить с обоих концов изоляцию примерно на 1 см.

Далее. Нам понадобится 4 короткие перемычки (для соединения линий питания платы) и 2 длинные, лучше если они будут красного и синего цвета.

Теперь мы на макетной плате соберем нашу первую схему. Возьмем резистор 22кОм с цветными полосками (красный-красный-оранжевый-золотой). А какое реальное сопротивление данного резистора? Давайте проверим это мультиметром!

Как измерить сопротивление мультиметром

  • черный провод подключите к разъему „COM”;
  • красный провод подключите к разъему » Ω «
  • мы ожидаем получить значение около 22кОм, поэтому установите регулятор на значение 200к в секции Ω и, если это необходимо, включите прибор (некоторые модели включаются при повороте диска), который до измерения должен показать 0;
  • металлическими наконечниками щупов мультиметра коснитесь ножек резистора;
  • смотрим значение – у нас сопротивление составляет 22,1кОм;
  • выключаем мультиметр.

Как и в случае с батарейкой, значение, измеренное мультиметром, отличается от номинального значения тестируемого элемента (резистора). Напомним, что золотая полоска на резисторе (значение цветных полосок смотрите в этой статье) означает допуск 5%, то есть 22кОм x 5% = 1,1кОм

Поэтому диапазон отклонения сопротивления для нашего резистора может быть в пределах от 20,9кОм до 23,1кОм.

Теперь соединим на макетной плате кассету с батарейками и резистор так, как показано на картинке ниже:

В электронике чтобы изобразить связи между отдельными элементами используют принципиальные схемы. В нашем случае схема будет выглядеть следующим образом:

Символ обозначенный как B1 — это наши батарейки, обеспечивающие общее напряжение: 4 х 1,5В = 6В. наш резистор на 22кОм обозначен символом R1.
В соответствии с законом Ома:

I = U / RI = 6В / 22кОмI = 6В / 22000 ОмI = 0,000273 А

I = 273мкА

Теоретически, ток в схеме должен составлять 273мкА. Вспомним, что сопротивление резистора может отличаться в пределах 5% (у нас это 22,1кОм). Напряжение, поступающее от батареек, также может отличаться от номинальных 6 вольт, и оно будет зависеть от степени разряда этих батареек.

Давайте посмотрим, какое реальное напряжения идет от 4 батареек по 1,5 В.

Как измерить напряжение мультиметром

  • черный провод подключите к разъему „COM”;
  • красный провод подключите к разъему „V”
  • мы ожидаем получить значение около 6В, поэтому установите регулятор на значение «20» в секции DCV или V-, если это необходимо, включите прибор, который должен изначально показать 0;
  • металлическими наконечниками щупов мультиметра прикоснитесь проводов выходящих из кассеты батареек;
  • смотрим результат – у нас напряжение составляет 6,5 В;
  • выключаем мультиметр.

Подставим полученные значения в формулу, вытекающую из закона Ома:

I = U / RI = 6,5 В / 22,1кОмI = 6,5 В / 22100 ОмI = 0,000294 А

I = 294мкА

Для подтверждения достоверности наших расчетов, нам не остается ничего другого, кроме как измерить фактический ток мультиметром.

Как измерить силу тока мультиметром

  • черный провод подсоедините к разъему „COM”;
  • красный провод подключите к разъему „mA”;
  • мы ожидаем получить значение 294 мкА, поэтому устанавливаем регулятор на значение 2000µ в секции A-, если это необходимо, включите прибор, который должен изначально показать 0;
  • для измерения тока, необходимо мультиметр подключить в разрыв цепи. Металлическими наконечниками щупов мультиметра касаемся, ножки джемпера соединяющий положительный полюс батареи и ножки резистора;
  • считываем значение – у нас сила тока составляет 294 мкA;
  • выключаем мультиметр.

И под конец данного урока приведем схему, отражающую различия подключения мультиметра при измерении напряжения и силы тока:

Источник: http://www.joyta.ru/7650-osnovy-elektroniki-urok-1-nachalo/

Инженер-электронщик

Инженер-электронщик занимается разработкой, монтажом, наладкой и запуском электронной техники. Профессия подходит тем, кого интересует физика, математика и информатика (см.выбор профессии по интересу к школьным предметам).

Дальнейшую бесперебойную работу и правильную эксплуатацию электронного оборудования обеспечивает также инженер-электронщик.

Профессия инженера-электронщика классифицируется на специализации по направлению деятельности :

  • системотехнические;
  • схемотехнические;
  • конструкторские.

Системотехнические специальности призваны мыслить широко, проявлять системный подход к решению проблем радиоэлектроники. Специалист-системотехник занимается проектированием целой системы электронного оборудования с заданными параметрами, не вникая в структуру отдельных устройств. 

Схемотехник, напротив, детально разбирается в строении отдельных устройств и занимается проектированием  подсистем с определенными характеристиками, то есть решает конкретные локальные задачи. Его не волнует вопрос комплексного использования разработанного им устройства.

Инженеры-конструкторы решают задачи по оптимизации принципиальных схем, создавая более миниатюрные устройства. В их функции также входит решение технических проблем охлаждения работающих устройств и теплоотвода, проектирование корпусов электронной аппаратуры.

Особенности профессии

Помимо вышеуказанных должностных обязанностей инженер-электронщик:

  • составляет технические задания и документацию, а также инструкции и методические указания по работе с электронной техникой;
  • осуществляет технические консультации и обучает пользователей или заказчиков работе с электронной аппаратурой.

Круг обязанностей инженера-электронщика зависит от места работы, его специализации. На сайтах вакансий должность инженера-электронщика может называться по-разному: инженер-разработчик РЭА (радиоэлектронной аппаратуры), инженер-разработчик печатных плат, инженер-конструктор электронной техники.

Функциональные обязанности инженера-разработчика:

  • разработка принципиальных схем и печатных плат;
  • подготовка технической документации;
  • монтаж и тестирование опытных образцов;
  • пуск и наладка электронной техники;
  • сопровождение производства и сервисное обслуживание;
  • проведение профилактического и текущего ремонта;
  • заказ запчастей и комплектующих к оборудованию.

Плюсы

  • Постоянная востребованность профессии в современном мире и в обозримом будущем
  • Высокий уровень оплаты труда
  • Возможность постоянного развития в профессиональном плане

Минусы

  • Мир электронной техники динамично обновляется, в связи с чем инженеру-электронщику необходимо постоянно находиться в курсе всех новинок. Это, скорее, плюс профессии, чем минус.

Место работы

  • Научно-производственные объединения по разработке и производству электронной техники;
  • профильные НИИ;
  • сервисные центры;
  • мастерские по ремонту электронной техники.

Важные качества

  • аналитический склад ума;
  • пространственное воображение;
  • широкий кругозор;
  • инициативность;
  • стремление к освоению новых знаний и повышению профессионального уровня;
  • постоянное изучение передового российского и зарубежного опыта разработки, эксплуатации и техобслуживания электронной техники;
  • кропотливость и тщательность;
  • терпение;
  • нацеленность на результат;
  • аккуратность;
  • ответственность;
  • организованность.

Компьютерная профессиональная грамотность:

  • владение специальными программами:

Источник: https://www.profguide.io/professions/injener_elektronshik.html

Электроника для начинающих (часть 1)

Электроника для начинающих — это готовый набор различных электронных компонентов, который позволит вам пройти первые 11 экспериментов по второму изданию хитовой книги от Чарльза Платта (продаётся отдельно).

Набор будет интересен взрослым и подросткам, кто пока ещё мало понимает в схемотехнике, но хочет разобраться с электричеством, различными компонентами и тем, как создаются электронные устройства. Вы разберётесь со всем этим не через сухую теорию, а в увлекательной форме, через серию небольших проектов, которые создадите своими руками: книга Чарльза Платта рассчитана именно на это.

Электроника для начинающих поставляется в красочной коробке, поэтому набор может послужить полезным и презентабельным подарком для пытливых умов в возрасте от 10 лет.

Эксперименты

  • Эксперимент 1. Попробуйте электричество на вкус!
  • Эксперимент 2. Давайте испортим батарею!
  • Эксперимент 3. Ваша первая электрическая цепь
  • Эксперимент 4. Переменное сопротивление
  • Эксперимент 5. Давайте изготовим гальванический элемент
  • Эксперимент 6. Обычные переключатели
  • Эксперимент 7. Исследование реле
  • Эксперимент 8. Генератор на основе реле
  • Эксперимент 9. Время и конденсаторы
  • Эксперимент 10. Транзисторные переключатели
  • Эксперимент 11. Свет и звук

Когда с первыми 11 экспериментами будет покончено, можно переходить ко второй части набора, которая содержит дополнительные компоненты, позволяющие дойти до 25-го эксперимента.

Комплектация

В состав входят сотни компонентов нескольких десятков видов. Если вы захотите собрать всё необходимое самостоятельно, вам понадобится не один день и поход в десяток магазинов. Мы упростили задачу, собрав все компоненты в этой коробке:

  • 10× Резистор (470 Ом)
  • 10× Резистор (1 кОм)
  • 10× Резистор (2,2 кОм)
  • 1× Резистор (4,7 кОм)
  • 1× Резистор (10 кОм)
  • 1× Резистор (100 кОм)
  • 1× Резистор (220 кОм)
  • 1× Резистор (1 МОм)
  • 2× Переменный резистор (потенциометр) 16 мм (1 кОм)
  • 1× Переменный резистор (потенциометр) 16 мм (500 кОм)
  • 10× Конденсатор керамический (10 нФ)
  • 10× Конденсатор керамический (100 нФ)
  • 10× Конденсатор электролитический (1 мкФ)
  • 10× Конденсатор электролитический (3,3 мкФ)
  • 10× Конденсатор электролитический (33 мкФ)
  • 10× Конденсатор электролитический (10 мкФ)
  • 10× Конденсатор электролитический (100 мкФ)
  • 10× Конденсатор электролитический (220 мкФ)
  • 1× Конденсатор электролитический (1000 мкФ)
  • 4× Кнопка тактовая
  • 5× Предохранители стеклянные
  • 8× Светодиод 5 мм (Красный)
  • 4× Светодиод 5 мм (Жёлтый)
  • 10× Транзисторы 2N2222
  • 1× Динамик HSP3040A
  • 2× Реле (12 В)
  • 2× Тумблер
  • 5× Провода с крокодилами
  • 1× Соединительные провода «папа-папа»
  • 1× Разъём для батарейки Крона
  • 1× Батарейный отсек 1 AA
  • 1× Breadboard
  • 1× Импульсный блок питания (500 мА)

В дополнение рекомендуем

  • Саму книгу «Электроника для начинающих».
  • 6 любых батареек АА (пальчиковых). Они используются, как источник питания в большинстве экспериментов.
  • Батарейку «Крона». Она применяется в нескольких экспериментах.
  • Мультиметр. Он просто необходим для прохождения экспериментов, поэтому, если у вас такого ещё нет, понадобится его приобрести или у кого-нибудь одолжить.
  • Бокорезы. Они сделают работу с новыми компонентами приятнее.
  • Вторую часть набора, чтобы можно было сразу же продолжить эксперименты, следующие за одиннадцатым.

Источник: https://amperka.ru/product/make-electronics-part1

Как разбираться в компьютерах с нуля: инструкция для чайников

Как разбираться в компьютерах с нуля? На сегодняшний день этот вопрос стал более популярен, чем когда-либо. Компьютерная индустрия интересует не только молодых, но и более взрослых людей. Но откуда такой интерес?

Для чего вообще необходим компьютер? Большая часть людей покупает компьютер для развлечения. Они устанавливают интересные игры, смотрят любимые фильмы, общаются в соцсетях и т. д. Но есть и другая категория людей, более продвинутых, которые смогли найти в данной технике большой источник дохода.

В книге “Как разбираться в компьютерах для чайников” есть вся необходимая информация, которая поможет более глубоко ознакомиться с основами компьютера. Умножив свои знания, многие стали программистами, веб-дизайнерами, разработчиками, SEO-копирайтерами и т. д.

Важно запомнить, что они стали такими, а не, как многие считают, родились.

Благодаря этой статье вы узнаете, как начать разбираться в компьютерах, из чего они состоят и как ими пользоваться. Эти начальные знания помогут вам определиться с целью приобретения данной техники: развлекаться или зарабатывать.

Главное отличие компьютера от ноутбука

Перед тем как мы начнем познавать азы компьютерной индустрии, необходимо запомнить, чем ноутбук отличается от компьютера. Самое главное — это его мобильность. Если ноутбук можно взять с собой, куда бы вы ни захотели, то с компьютером такого не получится.

Ноутбук — это мобильное устройство, которое работает от аккумулятора, а компьютер — это стационарная, работающая от сети техника. Оба устройства оснащены клавиатурой, мышкой, экраном, оперативной памятью, видеокартой и т. д. Все составные части (монитор, звуковая карта, процессор и т. д.), которые находятся в компьютере, могут при необходимости подлежать замене, чего нельзя сказать о ноутбуке.

Помимо этого, как в компьютере, так и в ноутбуке устанавливается операционная система (Windows или Linux). Далее мы узнаем, как научиться разбираться в компьютерах, и начнем сразу с операционной системы. Если вы освоите, например, ноутбук, то в работе с компьютером у вас не возникнет проблем, и наоборот.

Как разбираться в компьютерах: операционная система

Операционная система — это душа компьютера, его жизненная сила. Когда вы включаете эту технику, первым делом начинает работать именно операционная система, а только потом остальные программы, которые находятся в ней.

Благодаря этому программному обеспечению запускаются все установленные на компьютере программы и воспроизводятся медиафайлы. Без этого обеспечения компьютер показывал бы только черный экран и цифры с буквами.

Для чего еще нужна операционная система? Раньше музыку слушали на магнитофонах, которые воспроизводили записи с кассет и пластинок. Сейчас это все запускается с помощью различных программ и проигрывателей, которые поддерживает программное обеспечение. Другими словами, операционная система оживляет все части компьютера: мышь, колонки, монитор, клавиатуру и все, что входит в системный блок (процессор, оперативная память, материнская плата и т. д.).

Устройство ПК

Перед тем как научиться разбираться в железе компьютера, сначала необходимо изучить его конструкцию. То есть нужно понимать, что именно входит в состав подобной техники.

Компьютер состоит из:

  • Внутренних частей — тех, что содержатся в системном блоке (большой черный ящик). К ним относятся материнская плата, процессор, дисковод, оперативная память, звуковая и видеокарта, кулер и прочее. Каждую из этих частей при неисправности можно заменить на новую.
  • Внешних частей — всех остальных приборов компьютера, которые можно подключить к системному блоку (мышка, клавиатура, колонки и монитор).

Также все эти части, как внутренние, так и внешние, имеют свою отдельную классификацию:

  • Устройства ввода информации — это те части, с помощью которых компьютер получает информацию (клавиатура и мышь).
  • Устройства вывода информации — те, благодаря которым мы получаем информацию от компьютера (экран и колонки).

Итак, мы рассмотрели основные части компьютера, без которых он не сможет успешно работать. Но если вы хотите узнать, как лучше разбираться в компьютерах, то тогда обсудим более детально каждую составляющую.

Системный блок

Если операционная система — это душа компьютера, то системный блок — это все внутренние органы. В состав системного блока входит множество частей, которые взаимодействуют друг с другом. Самая важная часть — это материнская плата (большая микросхема). Именно к ней крепится все остальное.

Ко внешним частям относятся также Wi-Fi устройство, игровые приставки и ТВ-тюнер, которые тоже подключаются к системному блоку. Перед тем как купить компьютер, необходимо выбрать, какой цели он будет служить: для игр, для просмотра фильмов и работы с документами или просто для выхода в Интернет. В зависимости от вашего выбора консультант магазина предложит материнскую плату с оптимальной стоимостью и необходимыми функциями.

На внешней стороне системного блока располагаются две кнопки: одна большая, другая маленькая. Большая служит для запуска компьютера, а маленькая — для аварийной перезагрузки.

Как разбираться в компьютерах: монитор

Наверное, у каждого дома есть телевизор. Компьютерный монитор имеет нечто общее с ним. Оба этих устройства выполняют одну и туже функцию — вывод информации на экран. Главное их отличие в том, что в телевизор информация поступает от кабеля (аналогового сигнала) или через антенну, а монитор получает информацию от системного блока. Если быть точным, то от видеокарты, которая установлена в системном блоке.

Мониторы, как и телевизоры, могут отличаться по размеру и типу. Размер определяется в дюймах. А по типу монитор может быть или жидкокристаллический (ЖК), или с электронно-лучевой трубкой (ЭЛТ). Их главное отличие — это вес и габариты.

Монитор с ЭЛТ весил значительно тяжелее, чем ЖК, и занимал много места на рабочем столе, но по качеству картинки он не сильно уступал.

Современные ЖК-экраны обладают частотой обновления более 120 Гц и углом обзора в 178 градусов, чего нельзя сказать про дисплей с ЭЛТ.

Компьютерные колонки

Еще одно устройство вывода информации — это компьютерные колонки. В этом случае информация подается в виде звука, исходящего от звуковой карты. Главное отличие компьютерных колонок от обычных — встроенный аудиоусилитель. То есть звуковая карта, расположенная в системном блоке, передает аналоговый сигнал на аудиоусилитель, и только после этого обработанный звук выводится на динамики.

В компьютерных колонках имеется два шнура. Один подключается к системному блоку, а второй — к электросети. Между собой колонки тоже имеют соединение шнуром, некоторые оснащены регулятором звука.

Клавиатура

Как разбираться в компьютерах, а именно в устройствах по выводу информации, мы частично ознакомились. Теперь обсудим те устройства, которые служат для ввода информации.

Как правило, клавиатура предназначена для написания цифр и букв (как русских, так и английских). Но современные клавиатуры имеют множество других полезных функций, которые помогают сократить время на включение или выключение некоторых программ.

Игровые клавиатуры имеют свои особенности для большего удобства. Зачастую они изогнутой формы и оснащены множеством дополнительных функций, которые позволяют работать с компьютером без мышки.

Например, в мультимедийных клавиатурах на верхней панели располагаются дополнительные кнопки, отвечающие за уровень звука, перемотку песен, пауз и т. д. Игровые клавиатуры имеют свои особенности для большего удобства. Зачастую они изогнутой формы и оснащены множеством дополнительных функций, которые позволяют работать с компьютером без мышки.

Мышь

Еще одно устройство для ввода информации — это компьютерная мышь. Свое название она получила из-за уникальной формы, которая напоминает живую мышку. Компьютерная мышь, как и клавиатура, может отличаться не только формой, но функциональностью.

У стандартной мышки всего две кнопки (правая и левая) и колесико. Левая кнопка предназначена для выполнения основных действий (открыть или закрыть программу, переместить ярлыки и т. д.), а правая — для дополнительных (открыть свойства, дополнительную панель и прочее).

Что касается игровых мышек, то помимо стандартных кнопок их снабдили множеством дополнительных (набор цифр, блокировка колесика, включение и выключение подсветки и т. д.). Также на современных мышках используется лазер, который более чувствительный, чем обычный шарик, как у стандартных. Такие мышки стоят несколько дороже, чем простые приборы, но срок их службы больше (от трех до пяти лет).

Заключение

Благодаря рассмотренной информации можно понять, как разбираться в компьютерах, а именно — в их составляющих. Благодаря полученным знаниям вы сможете выбрать оптимальный компьютер, который будет соответствовать вашим требованиям и цели предназначения. Помните, что все его части, как внешние так и внутренние, при поломке можно заменить на новые, чего нельзя сделать с ноутбуком.

Источник: https://FB.ru/article/404978/kak-razbiratsya-v-kompyuterah-s-nulya-instruktsiya-dlya-chaynikov

Как научиться читать электрические (принципиальные) схемы начинающему

Рубрика: Статьи 28.01.2020   ·   : 0   ·  На чтение: 10 мин   ·  Просмотры:

Принципиальные схемы — это основа радиолюбительства и электроники. Схемы помогают собирать устройства и разбираться в работе радиодеталей. Без них была бы полная неразбериха, если бы детали рисовали на схемах так, как они выглядят на самом деле.

Особенности чтения схем

В принципиальных схемах проводники (или дорожки) обозначаются линиями.

Так обозначаются проводники, которые пересекаются, но они не имеют общего соединения и электрически друг с другом не связаны.

А вот так они выглядят, если между ними есть соединение. Черная точка — это узел в схеме. Узел — это соединение нескольких проводников или деталей вместе. Они электрически друг с другом связаны.

Общая точка

Часто у начинающих радиолюбителей возникает вопрос — что это за символ на схеме?

Это общая точка (GND, земля). Раньше ее называли общим проводом. Так обозначается единый провод питания. Обычно это минус питания. Раньше на схемах могли сделать общим проводом и плюс питания. В данном случае схема без общей точки выглядела бы вот так:
Общая точка с однополярным питанием визуально лучше и компактнее выглядит, чем если просто сделать единую линию между ними.

Почему она может называться землей (GND)? Раньше в качестве общего провода могло использоваться шасси корпуса прибора. Из-за этого возникла путаница между заземлением и землей. Оно интерпретируется в контексте схемы. Та схема, что была разобрана выше — общая точка (земля) это просто минус питания. Другое дело это двуполярные источники тока и заземление.

Двуполярное питание и общая точка

В двуполярном питании общая точка — это средний контакт между плюсом и минусом.

Заземление

Примером заземления может послужить фильтр в компьютерных блоках питания.

С конденсаторного фильтра помехи идут на корпус блока питания. Это и есть заземление. А с блока питания они должны уходить в розетку, если у вас есть заземление, иначе сам корпус блока питания может быть под напряжением. Токи там не большие, они не опасны для жизни. Это делается с целью уменьшения импульсных помех в блоке питания и безопасности.

Иногда в блоках питания вместо корпуса помехи с конденсатора идут на общую точку. Это все зависит от конструкции и схемотехники. В этом случае помех будет больше, чем с заземлением.

Номиналы радиодеталей

Вообще, в этом плане есть разногласия. Согласно ГОСТУ на текущий момент, номиналы деталей на принципиальных схемах не указывается. Это сделано ради того, чтобы не нагромождать схему информацией.

К принципиальной схеме прилагается список деталей, монтажная и структурные схемы, а также печатная плата.

Есть еще один общепринятый стандарт. На схемах указываются номиналы некоторых деталей и их рабочие напряжения.
Например, на этой схеме есть два резистора.
По умолчанию сопротивление без приставки пишется только числом. У R2 сопротивление равно 220 Ом. А у R3 после числа есть буква. Сопротивление этого резистора читается как 2,2 кОм (2 200 Ом).

Рассмотрим на схеме два конденсатора.

В данном случае C5 это неполярный конденсатор с емкостью 0,01 мкФ. Микрофарады могут обозначаться как мкФ, так и uF. А конденсатор С6 полярный и электролитический. На это указывает знак плюс возле УГО. Емкость С6 равна 470 мкФ. Номинальное рабочее напряжение указывается в вольтах. Здесь для С6 это 16 В.

Нанофарады обозначаются как nF.

Если на схеме нет приставки микрофарад (мкФ, uF), или нанофарад (нФ, nF) то емкость этого конденсатора измеряется в пикофарадах (пФ, pF). Такое условие не общепринятое, поэтому тщательно изучите схему, которую вы собираетесь читать или собирать. В фарадах (F) емкостей мало, поэтому используются мкФ, нФ и пФ.

Что такое даташит и для чего он нужен

Даташит (Datasheet) — это техническая спецификация, в которой указывается полная информация о радиодетали. Вся техническая информация, основная схема включения, параметры и типы корпусов указываются именно в этом документе.

Даташиты бывают на разных языках, в основном на английском. Есть и переведенные варианты.

Документация на микросхему NE555. Нарисован корпус и внешний вид детали.
Здесь подробно описывается микросхема, ее параметры и условия работы.

Такая документация есть на любую деталь. Это очень удобно и информативно, особенно при поиске аналогов. А помощью интернета поиск аналога деталей или схемы стал еще проще.

Еще даташит позволяет опознать неизвестную деталь или микросхему. Достаточно написать ее название в поисковике, добавить слово даташит, и в результатах поиска будет вся документация.

Как научиться читать принципиальные схемы

На самом деле есть только несколько способов. Это теория и практика. Если вы выучите обозначение радиодеталей, это еще не значит, что вы выучили схемотехнику. Это все равно, что выучить азбуку, но без грамматики и практики вы не выучите язык.

Теория — это схемотехника, книги, описание принципа работы схемы. Практика — это сборка устройств, ремонт и пайка.

Например простая схема усилителя на одном транзисторе.

Вход X1 плюс (левый или правый канал), X2 минус. Звуковой сигнал поступает на электролитический конденсатор C1. Он защищает транзистор VT1 от замыкания, поскольку транзистор VT1 постоянно открыт при помощи делителя напряжения на R1 и R2. Делитель напряжения устанавливает рабочую точку на базе транзистора VT1, и транзистор не искажает входной сигнал.

Резистор R3 и конденсатор C2, которые подключены к эмиттеру транзистора VT1, выполняют функцию термостабилизации рабочей точки при повышении температуры транзистора. Электролитический конденсатор C3 накапливает и фильтрует питающее напряжение. Динамическая головка BF1 служит выходом звукового сигнала.

Можно ли это понять, только выучив обозначения радиодеталей без схемотехники и теории? Навряд-ли.

Еще сложнее дело обстоит с цифровой техникой.

Что это за микроконтроллер, какие он функции выполняет, какая прошивка и какие фьюзы в нем установлены? А вторая микросхема, какой это усилитель? Без даташитов и описания к схеме не получится понять ее работу.
Изучайте схемотехнику, теорию и практику. Просто выучив название деталей не получится разобраться в схемотехнике.

Обозначение радиодеталей выучиться само по себе по мере практики и накопления знаний. Еще все зависит от выбранной отрасли. У связистов одна схемотехника, у ремонтников мобильной техники другая. А те, кто занимается звуком, не очень поймут электриков. Как и наоборот.

Чтобы понять другую отрасль, ее схемотехнику и принципы работы нужно в нее погрузиться.

Принципиальные схемы это своего рода язык, у которого есть разные диалекты.

Поэтому, не следует строить иллюзии. Изучайте схемотехнику и собирайте схемы.

Принципиальные схемы помогают собирать устройства, и при изучении теории, понимать работу устройства. Без знаний и опыта, схема это просто схема.

Обозначения радиодеталей на принципиальных схемах

УГО — это условно графическое изображения радиодетали на схеме. Некоторые УГО различаются друг от друга.

Например, в США обозначение резисторов отличается от СНГ и Европы.

Из-за этого меняется восприятие схемы.

Однако внешне и по обозначениям они похожи. Или например, транзисторы. Где-то они чертятся с кругами, а где-то без. Могут различаться размеры и угол стрелок. В таблице представлены УГО отечественных радиодеталей.
Это далеко не все детали. И зубрить их особого смысла нет. Такие таблицы пригодятся в виде справочника. Можно опознать что за деталь представлена на схеме во время ее изучения или сборки устройства.

Какими буквами обозначаются радиодетали на схемах

Буквенное обозначение на схеме Радиодеталь
R Резисторы (переменный, подстроечный и постоянный)
VD Диоды (стабилитрон, мост, варикап и т.д.)
C Конденсаторы (неполярный, электролитический, переменный и т.д.)
L Катушки и дроссели
SA Переключатели
FU Предохранители
FV Разрядники
X Разъемы
K Реле
VS Тиристоры (тетродные, динисторы, фототиристоры и т.п.)
VT Транзисторы (биполярные, полевые)
HL Светодиоды
U Оптопары

Источник: https://tyt-sxemi.ru/chitat-ehlektricheskie-skhemy/

Понравилась статья? Поделиться с друзьями:
ЭлектроМастер
Что такое установленная мощность

Закрыть