Как определить направление силы лоренца

Как определить направление силы Лоренца | Сделай все сам

как определить направление силы лоренца

Сила Лоренца определяет интенсивность воздействия электрического поля на точечный заряд. В одних случаях под ней подразумевается сила, с которой на заряд q, тот, что движется со скоростью V, действует магнитное поле, в иных имеется ввиду суммарное влияние электрического и магнитного полей.

Инструкция

1. Дабы определить направление силы Лоренца , было сделано мнемоническое правило левой руки. Его легко запомнить вследствие тому, что направление определяется с подмогой пальцев. Раскройте ладонь левой руки и выпрямите все пальцы. Огромный палец отогните под углом в 90 градусов по отношению ко каждым остальным пальцам, в одной плоскости с ладонью.

2. Представьте, что четыре пальца ладони, которые вы удерживаете совместно, указывают направление скорости движения заряда, если он правильный, либо противоположное скорости направление , если заряд негативный.

3. Вектор магнитной индукции, тот, что неизменно направлен перпендикулярно скорости, будет, таким образом, входить в ладонь. Сейчас посмотрите, куда указывает крупный палец – это и есть направление силы Лоренца .

4. Сила Лоренца может быть равна нулю и не иметь векторной составляющей. Это происходит в том случае, когда траектория заряженной частицы расположена параллельно силовым линиям магнитного поля. В таком случае частица имеет откровенную траекторию движения и непрерывную скорость. Сила Лоренца никак не влияет на движение частицы, так как в этом случае она вообще отсутствует.

5. В самом простом случае заряженная частица имеет траекторию движения, перпендикулярную силовым линиям магнитного поля. Тогда сила Лоренца создает центростремительное убыстрение, вынуждая заряженную частицу двигаться по окружности.

Совет 2: Как определить ускорение

Абсолютно разумно и внятно, что на различных участках пути скорость движения тела неравномерно, где-то она стремительней, а где-то неторопливей. Для того, дабы измерять метаморфозы скорости тела за интервалы времени, было введено представление “ускорение “. Под ускорение м воспринимается метаморфоза скорости движения объекта тела за определенный интервал времени, в тот, что и случилось метаморфоза скорости.

Вам понадобится

  • Знать скорость перемещения объекта на различных участках в различные интервалы времени.

Совет 3: Как определить направление магнитной индукции

Магнитная индукция является векторной величиной, а потому помимо безусловной величины характеризуется направлением . Дабы обнаружить его, надобно обнаружить полюса непрерывного магнита либо направление тока, тот, что порождает магнитное поле.

Вам понадобится

  • – эталонный магнит;
  • – источник тока;
  • – правый буравчик;
  • – прямой проводник;
  • – катушка, виток провода, соленоид.

Совет 4: Как определить направление индукции

Индукция появляется в проводнике при пересечении силовых линий поля, если его перемещать в магнитном поле. Индукция характеризуется направлением, которое дозволено определить по установленным правилам.

Вам понадобится

  • – проводник с током в магнитном поле;
  • – буравчик либо винт;
  • – соленоид с током в магнитном поле;

Формула силы Лоренца

как определить направление силы лоренца
Определение

Сила , действующая на движущуюся заряженную частицу в магнитном поле, равная:

называется силой Лоренца (магнитной силой).

Исходя из определения (1) модуль рассматриваемой силы:

где – вектор скорости частицы, q – заряд частицы, – вектор магнитной индукции поля в точке нахождения заряда, – угол между векторами и. Из выражения (2) следует, что если заряд движется параллельносиловым линиям магнитного поля,то сила Лоренца равна нулю. Иногда силу Лоренца стараясь выделить, обозначают, используя индекс:

Направление силы Лоренца

Сила Лоренца (как и всякая сила) – это вектор. Ее направление перпендикулярно вектору скорости и вектору (то есть перпендикулярно плоскости, в которой находятся векторы скорости и магнитнойиндукции) и определяется правилом правого буравчика (правого винта) рис.1 (a). Если мы имеем дело с отрицательным зарядом,тонаправление силы Лоренца противоположно результату векторного произведения (рис.1(b)).

вектор направлен перпендикулярно плоскости рисунков на нас.

Следствия свойств силы Лоренца

Так как сила Лоренца направлена всегда перпендикулярно направлению скорости заряда, то ее работа над частицей равна нулю. Получается,что воздействуя на заряженную частицу при помощи постоянного магнитного поля нельзя изменить ее энергию.

Если магнитное поле однородно и направлено перпендикулярно скорости движения заряженной частицы, то заряд под воздействиемсилы Лоренца будет перемещаться по окружности радиуса R=const в плоскости, которая перпендикулярна вектору магнитной индукции.При этом радиус окружности равен:

где m – масса частицы,|q|- модуль заряда частицы, – релятивистский множитель Лоренца, c – скорость света в вакууме.

Сила Лоренца — это центростремительная сила. По направлению отклонения элементарной заряженной частицы в магнитном поле делают вывод о ее знаке (рис.2).

Формула силы Лоренца при наличии магнитного и электрического полей

Если заряженная частица перемещается в пространстве, в котором находятся одновременно два поля (магнитное иэлектрическое), то сила, которая действует на нее, равна:

где – вектор напряженности электрического поля в точке, в которой находится заряд.Выражение (4) было эмпирически получено Лоренцем. Сила, которая входит в формулу (4) так же называется силой Лоренца(лоренцевой силой).

Деление лоренцевой силы на составляющие: электрическую и магнитную относительно, так как связано с выбором инерциальной системы отсчета.

Так, если система отсчета будет двигаться с такой же скоростью, как и заряд, то в такой системе сила Лоренца, действующая на частицу, будет равна нулю.

Единицы измерения силы Лоренца

Основной единицей измерения силы Лоренца (как и любой другой силы) в системе СИ является: [F]=H

В СГС: [F]=дин

Примеры решения задач

Пример

Задание. Какова угловая скорость электрона, который движется по окружности в магнитном поле с индукцией B?

Решение. Так как электрон (частица имеющая заряд) совершает перемещение в магнитном поле, то на него действует сила Лоренца вида:

где q=qe – заряд электрона. Так как в условии сказано, что электрон движется по окружности, то это означает, что, следовательно, выражение для модуля силы Лоренца примет вид:

Сила Лоренцаявляется центростремительной и кроме того, по второму закону Ньютона будет в нашем случае равна:

Приравняем правые части выражений (1.2) и (1.3), имеем:

Из выражения (1.3) получим скорость:

Период обращения электрона по окружности можно найти как:

Зная период, можно найти угловую скорость как:

Ответ.

Пример

Задание. Заряженная частица (заряд q, масса m) со скоростью vвлетает в область, где имеется электрическое поле напряженностью E и магнитное поле с индукцией B. Векторы и совпадают по направлению. Каково ускорение частицы в моментначалаперемещения в полях, если?

Решение. Сделаем рисунок.

На заряженную частицу действует сила Лоренца:

Магнитная составляющая имеет направление перпендикулярное вектору скорости () и векторумагнитной индукции ().Электрическая составляющая сонаправлена с вектором напряжённости () электрического поля.В соответствии со вторым законом Ньютона имеем:

Получаем, что ускорение равно:

Если скорость заряда параллельна векторам и, тогда , получим:

Ответ.

Читать дальше: Формула силы натяжения нити.

Вы поняли, как решать? Нет?

Источник: https://www.webmath.ru/poleznoe/formules_21_29_sila_lorenca.php

Сила Лоренца в магнитном поле

как определить направление силы лоренца

  • Определение силы Лоренца
  • Немного истории
  • Формула силы Лоренца
  • Правило левой руки
  • Применение силы Лоренца
  • Рекомендованная литература и полезные ссылки
  • Сила Лоренса, видео
  • Определение силы Лоренца

    Сила Лоренца представляет собой комбинацию магнитной и электрической силы на точечном заряде, который вызван электромагнитными полями.

    Или другими словами, сила Лоренца – это сила, действующая на всякую заряженную частицу, которая падает в магнитном поле с определенной скоростью.

    Ее величина зависит от величины магнитной индукции В, электрического заряда частицы q и скорости, с которой частица падает в поле – V. О том какая формула расчета силы Лоренца, а также ее практическое значение в физике читайте далее.

    Немного истории

    Первые попытки описать электромагнитную силу были сделаны еще в XVIII веке. Ученые Генри Кавендиш и Тобиас Майер высказали предположение, что сила на магнитных полюсах и электрически заряженных объектах подчиняется закону обратных квадратов. Однако экспериментальное доказательство этого факта не было полным и убедительным. Только в 1784 году Шарль Августин де Кулон при помощи своего торсионного баланса смог окончательно доказать это предположение.

    В 1820 году физиком Эрстедом был открыт факт, что на магнитную стрелку компаса действует ток вольта, а Андре-Мари Ампер в этом же году смог разработать формулу угловой зависимости между двумя токовыми элементами. По сути, эти открытия стали фундаментом современной концепции электрических и магнитных полей.

    Сама же концепция получила свое дальнейшее развитие в теориях Майкла Фарадея, особенно в его представлении о силовых линиях. Лорд Кельвин и Джеймс Максвелл дополнили теории Фарадея подробным математическим описанием.

    В частности Максвеллом было создано так званное, «уравнение поля Максвелла» – представляющее собой систему дифференциальных и интегральных уравнений, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах.

    Джей Джей Томпсон был первым физиком, кто попытался вывести из уравнения поля Максвелла электромагнитную силу, которые действует на движущийся заряженный объект. В 1881 году он опубликовал свою формулу F = q/2 v x B. Но из-за некоторых просчетов и неполного описания тока смещения она оказалась не совсем правильной.

    И вот, наконец, в 1895 году голландский ученый Хендрик Лоренц вывел правильную формулу, которая используется и поныне, а также носит его имя, как и та сила, что действует на летящую частицу в магнитном поле, отныне называется «силой Лоренца».

    Хендрик Лоренц.

    Формула силы Лоренца

    Формула для расчета силы Лоренца выглядит следующим образом:

    Где q – электрический заряд частицы, V – ее скорость, а B – величина магнитной индукции магнитного поля.

    При этом поле B выступает в качестве силы, перпендикулярной к направлению вектора скорости V нагрузок и направлению вектора B. Это можно проиллюстрировать на диаграмме:

    Правило левой руки

    Правило левой руки позволяет физикам определять направление и возврат вектора магнитной (электродинамической) энергии.

    Представьте себе, что наша левая рука расположена таким образом, что линии магнитного поля направлены перпендикулярно внутренней поверхности руки (так, что они проникают внутрь руки), а все пальцы за исключением большого указывают на направление протекания положительного тока, отклоненный большой палец указывает на направление электродинамической силы, действующий на положительный заряд, помещенный в это поле.

    Вот так это будет выглядеть схематически.

    Есть также и второй способ определения направления электромагнитной силы. Он заключается в расположении большого, указательного и среднего пальцев под прямым углом. В этом случае указательный палец будет показывать направление линий магнитного поля, средний – направление движение тока и большой – направление электродинамической силы.

    Применение силы Лоренца

    Сила Лоренца и ее расчеты имеет свое практическое применение при создании как специальных научных приборов – масс-спектрометров, служащих для идентификации атомов и молекул, так и создании многих других устройств самого разнообразного применения. Среди устройств есть и электродвигатели, и громкоговорители, и рельсовые пистолеты.

    Также способность силы Лоренса связывать механическое смещение с электрическим током представляет большой интерес для медицинской акустики.

    Рекомендованная литература и полезные ссылки

    • Болотовский Б. М. Оливер Хевисайд. — Москва: Наука, 1985. — С. 43-44. — 260 с.
    • Матвеев А. Н. Механика и теория относительности. — 3-е изд. — М. Высшая школа 1976. — С. 132.
    ЭТО ИНТЕРЕСНО:  Как повысить силу тока

    Сила Лоренса, видео

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

    Источник: https://www.poznavayka.org/fizika/sila-lorentsa/

    Сила Лоренца: определение, направление, формула, применение

    Мари Ампер доказал, что при наличии электрического тока в проводнике, оказавшемся в магнитном поле, он взаимодействует с силами этого поля. Учитывая то, что электрический ток – это не что иное, как упорядоченное движение электронов, можно предположить, что электромагнитные поля подобным образом действуют также на отдельно взятую заряженную частицу. Это действительно так. На точечный заряд действует сила Лоренца, модуль которой можно вычислить по формуле.

    Определение и формула

    Хендрик Лоренц доказал, что электромагнитная индукция взаимодействует с заряженными частицами. Эти взаимодействия приводят к возникновению силы Лоренца. Рассматриваемая сила возникает под действием магнитной индукции. Она перпендикулярна вектору скорости движущейся частицы (см. рис. 1). Необходимым условием возникновения этой силы является движение электрического заряда.

    Рис. 1. Выводы Лоренца

    Обратите внимание на расположение векторов (рисунок слева, вверху). Векторы, указывающие направления скорости и силы Лоренца, лежат в одной плоскости XOY, причём они расположены под углом 90º. Вектор магнитной индукции сориентирован вдоль оси Z, перпендикулярной плоскости XOY, а значит, в выбранной системе координат он перпендикулярен к векторам силы и скорости.

    По закону Ампера:

    Учитывая, что

    (здесь j – плотность тока, q – единичный заряд, n – количество зарядов на бесконечно малую единицу длины проводника, S – сечение проводника, символом v обозначен модуль скорости движущейся частицы), запишем формулу Ампера в виде:

    Так, как nSdl – общее число зарядов в объёме проводника, то для нахождения силы, действующей на точечный заряд, разделим выражение на количество частиц:

    Модуль F вычисляется по формуле:

    Из формулы следует:

    1. Сила Лоренца приобретает максимальное значение, если угол α прямой.
    2. Если точечный заряд, например, электрон, попадает в среду однородного магнитного поля, обладая некой начальной скоростью, перпендикулярной к линиям электромагнитной индукции, тогда вектор F будет перпендикулярен к вектору скорости. На точечный заряд будет действовать центробежная сила, которая заставит его вращаться по кругу. При этом работа равняется нулю (см. рис.2).
    3. Если угол между вектором индукции и скоростью частицы не равняется 90º, тогда заряд будет двигаться по спирали. Направление вращения зависит от полярности заряда (рис. 3).

    Рис. 2. Заряженная частица между полюсами магнитов Рис. 3. Ориентация вектора в зависимости от полярности заряда

    Из рисунка 3 видно, что вектор F направлен в противоположную сторону, если знак заряда меняется на противоположный (при условии, что направления остальных векторов остаются неизменными).

    Траекторию движения частицы правильно называть винтовой линией. Радиус этой винтовой линии (циклотронный радиус) определяется перпендикулярной к полю составной начальной скорости частицы. Шаг винтовой линии, вдоль которой перемещается частица, определяется составной начальной скорости заряда, вошедшего в однородное магнитное поле. Эта составная направлена параллельно к электромагнитным линиям.

    В чём измеряется?

    Размерность силы Лоренца в международной системе СИ – ньютон (Н). Разумеется, модуль силы Лоренца настолько крохотная величина, по сравнению с ньютоном, что её записывают в виде К×10-n Н, где 0

    Источник: https://www.asutpp.ru/sila-lorentsa.html

    Магнетизм для чайников: основные формулы, определение, примеры

    Часто бывает, что задачу не удается решить из-за того, что под рукой нет нужной формулы. Выводить формулу с  самого начала – дело не самое быстрое, а у нас на счету каждая минута.

    Ниже мы собрали вместе основные формулы по теме «Электричество и Магнетизм». Теперь, решая задачи, вы сможете пользоваться этим материалом как справочником, чтобы не терять время на поиски нужной информации.

    Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

    Магнетизм: определение

    Магнетизм – это взаимодействие движущихся электрических зарядов, происходящее посредством магнитного поля.

    Поле – особая форма материи. В рамках стандартной модели существует электрическое, магнитное, электромагнитные поля, поле ядерных сил, гравитационное поле и поле Хиггса. Возможно, есть и другие гипотетические поля, о которых мы пока что можем только догадываться или не догадываться вовсе. Сегодня нас интересует магнитное поле.

    Магнитная индукция

    Так же, как заряженные тела создают вокруг себя электрическое поле, движущиеся заряженные тела порождают магнитное поле. Магнитное поле не только создается движущимися зарядами (электрическим током), но еще и действует на них. По сути магнитное поле можно обнаружить только по действию на движущиеся заряды. А действует оно на них с силой, называемой силой Ампера, о которой речь пойдет позже.

    Изображение магнитного поля при помощи силовых линий

    Прежде чем мы начнем приводить конкретные формулы, нужно рассказать про магнитную индукцию.

    Магнитная индукция – это силовая векторная характеристика магнитного поля.

    Она обозначается буквой B и измеряется в Тесла (Тл). По аналогии с напряженностью для электрического поля Е магнитная индукция показывает, с какой силой магнитное поле действует на заряд.

    Кстати, вы найдете много интересных фактов на эту тему в нашей статье про теорию магнитного поля и интересные факты о магнитном поле Земли.

    Как определять направление вектора магнитной индукции? Здесь нас интересует практическая сторона вопроса. Самый частый случай в задачах – это магнитное поле, создаваемое проводником с током, который может быть либо прямым, либо в форме окружности или витка.

    Для определения направления вектора магнитной индукции существует правило правой руки. Приготовьтесь задействовать абстрактное и пространственное мышление!

    Если взять проводник в правую руку так, что большой палец будет указывать на направление тока, то загнутые вокруг проводника пальцы покажут направление силовых линий магнитного поля вокруг проводника. Вектор магнитной индукции в каждой точке будет направлен по касательной к силовым линиям.

    Сила Ампера

    Представим, что есть магнитное поле с индукцией B. Если мы поместим в него проводник длиной l, по которому течет ток силой I, то поле будет действовать на проводник с силой:

    Это и есть сила Ампера. Угол альфа – угол между направлением вектора магнитной индукции и направлением тока в проводнике.

    Направление силы Ампера определяется по правилу левой руки: если расположить левую руку так, чтобы в ладонь входили линии магнитной индукции, а вытянутые пальцы указывали бы направление тока, отставленный большой палец укажет направление силы Ампера.

    Сила Лоренца

    Мы выяснили, что поле действует на проводник с током. Но если это так, то изначально оно действует отдельно на каждый движущийся заряд. Сила, с которой магнитное поле действует на движущийся в нем электрический заряд, называется силой Лоренца. Здесь важно отметить слово «движущийся», так на неподвижные заряды магнитное поле не действует.

    Итак, частица с зарядом q движется в магнитном поле с индукцией В со скоростью v, а альфа – это угол между вектором скорости частицы и вектором магнитной индукции. Тогда сила, которая действует на частицу:

    Как определить направление силы Лоренца? По правилу левой руки. Если вектор индукции входит в ладонь, а пальцы указывают на направление скорости, то отогнутый большой палец покажет направление силы Лоренца. Отметим, что так направление определяется для положительно заряженных частиц. Для отрицательных зарядов полученное направление нужно поменять на противоположное.

    Если частица массы m влетает в поле перпендикулярно линиям индукции, то она будет двигаться по окружности, а сила Лоренца будет играть роль центростремительной силы. Радиус окружности и период обращения частицы в однородном магнитном поле можно найти по формулам:

    Взаимодействие токов

    Рассмотрим два случая. Первый – ток течет по прямому проводу. Второй – по круговому витку. Как мы знаем, ток создает магнитное поле.

    В первом случае магнитная индукция провода с током I на расстоянии R от него считается по формуле:

    Мю – магнитная проницаемость вещества, мю с индексом ноль – магнитная постоянная.

    Во втором случае магнитная индукция в центре кругового витка с током равна:

    Также при решении задач может пригодиться формула для магнитного поля внутри соленоида. Соленоид – это катушка, то есть множество круговых витков с током.

    Пусть их количество – N, а длина самого соленоилда – l. Тогда поле внутри соленоида вычисляется по формуле:

    Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

    Магнитный поток и ЭДС

    Если магнитная индукция – векторная характеристика магнитного поля, то магнитный поток – скалярная величина, которая также является одной из самых важных характеристик поля. Представим, что у нас есть какая-то рамка или контур, имеющий определенную площадь. Магнитный поток показывает, какое количество силовых линий проходит через единицу площади, то есть характеризует интенсивность поля. Измеряется в Веберах (Вб) и обозначается Ф.

    S – площадь контура, альфа – угол между нормалью (перпендикуляром) к плоскости контура и вектором В.

    При изменении магнитного потока через контур в контуре индуцируется ЭДС, равная скорости изменения магнитного потока через контур. Кстати, подробнее о том, что такое электродвижущая сила, вы можете почитать в еще одной нашей статье.

    По сути формула выше – это формула для закона электромагнитной индукции Фарадея. Напоминаем, что скорость изменения какой-либо величины есть не что иное, как ее производная по времени.

    Для магнитного потока и ЭДС индукции также справедливо обратное. Изменение тока в контуре приводит к изменению магнитного поля и, соответственно, к изменению магнитного потока. При этом возникает ЭДС самоиндукции, которая препятствует изменению тока в контуре. Магнитный поток, который пронизывает контур с током, называется собственным магнитным потоком, пропорционален силе тока в контуре и вычисляется по формуле:

    L – коэффициент пропорциональности, называемый индуктивностью, который измеряется в Генри (Гн). На индуктивность влияют форма контура и свойства среды. Для катушки с длиной l и с числом витков N индуктивность рассчитывается по формуле:

    Формула для ЭДС самоиндукции:

    Энергия магнитного поля

    Электроэнергия, ядерная энергия, кинетическая энергия. Магнитная энергия – одна из форм энергии. В физических задачах чаще всего нужно рассчитывать энергию магнитного поля катушки. Магнитная энергия катушки с током I и индуктивностью L равна:

    Объемная плотность энергии поля:

    Конечно, это не все основные формулы раздела физики «электричество и магнетизм», однако они часто могут помочь при решении стандартных задач и расчетах. Если же вам попалась задача со звездочкой, и вы никак не можете подобрать к ней ключ, упростите себе жизнь и обратитесь за решением в сервис студенческой помощи.

    Источник: https://Zaochnik-com.ru/blog/magnetizm-dlya-chajnikov-osnovnye-formuly-kotorye-prigodyatsya-pri-reshenii-zadach/

    Сила Лоренца

    Определение

    Если заряд движется в магнитном поле, то на него действует сила ($\overrightarrow{F}$), которая зависит от величины заряда (q), скорости движения частицы ($\overrightarrow{v}$) относительно магнитного поля, и индукции магнитного поля ($\overrightarrow{B}$). Эта сила была установлена экспериментально, называется она магнитной силой.

    И имеет в системе СИ вид:

    \[\overrightarrow{F}=q\left[\overrightarrow{v}\overrightarrow{B}\right]\ \left(1\right).\]

    Модуль силы в соответствии с (1) равен:

    \[F=qvBsin\alpha \ \left(2\right),\]

    где $\alpha $ — угол между векторами $\overrightarrow{v\ }и\ \overrightarrow{B}$. Из уравнения (2) следует, что если заряженная частица движется вдоль линии магнитного поля, то не испытывает действия магнитной силы.

    Направление магнитной силы

    Магнитная сила, исходя из (1) направлена перпендикулярно плоскости, в которой лежат векторы $\overrightarrow{v\ }и\ \overrightarrow{B}$. Ее направление совпадает с направлением векторного произведения $\overrightarrow{v\ }и\ \overrightarrow{B}$ в том случае, если величина движущегося заряда больше нуля, и направлена в противоположную сторону, если $q

    ЭТО ИНТЕРЕСНО:  Что такое постоянный ток

    Рис. 1

    Свойства силы магнитной силы

    Магнитная сила работы над частицей не свершает, так как всегда направлена перпендикулярно скорости ее движения. Из этого утверждения следует, что с помощью воздействия на заряженную частицу с помощью постоянного магнитного поля ее энергию изменить нельзя.

    Если на частицу, обладающую зарядом, действуют одновременно электрическое и магнитное поля, то равнодействующая сила может быть записана как:

    \[\overrightarrow{F}=q\overrightarrow{E}+q\left[\overrightarrow{v}\overrightarrow{B}\right]\ \left(3\right).\]

    Сила, указанная в выражении (3) называется силой Лоренца. Часть $q\overrightarrow{E}$ является силой, действующей со стороны электрического поля на заряд, $q\left[\overrightarrow{v}\overrightarrow{B}\right]$ характеризует силу действия магнитного поля на заряд. Сила Лоренца проявляется при движении электронов и ионов в магнитных полях.

    Ничего непонятно?

    Попробуй обратиться за помощью к преподавателям

    Пример 1

    Задание: Протон ($p$) и электрон ($e$), ускоренный одинаковой разностью потенциалов влетают в однородное магнитное поле. Во сколько раз радиус кривизны траектории движения протона $R_p$отличается от радиуса кривизны траектории электрона $R_e$. Углы, под которыми влетают частицы в поле, одинаковы.

    Решение:

    Если действием силы тяжести в сравнении с действием магнитной силы пренебречь, то второй закон Ньютона запишем как:

    \[ma_n=qvBsin\alpha \ \left(1.1\right).\]

    В формуле (1.1) мы учли, что вектор магнитной составляющей силы Лоренца перпендикулярен скорости и, следовательно, сообщает заряженной частице нормальное ускорение ($a_n$). Его мы можем выразить как:

    \[a_n=\frac{v2}{R}\left(1.2\right).\]

    По условию задачи заряженные частицы до попадания в магнитное поле ускоряются электрическим полем, для того, чтобы узнать скорость, с которой частицы влетают и движутся в магнитном поле, запишем из закона сохранения энергии:

    \[\frac{mv2}{2}=qU\left(1.3\right).\]

    Из формулы (1.3) выразим скорость движения частицы:

    \[v=\sqrt{\frac{2qU}{m}}\left(1.4\right).\]

    Подставим (1.2), (1.4) в (1.1), выразим радиус кривизны траектории:

    \[m\frac{v}{R}=qBsin\alpha \to R=\frac{mv}{qBsin\alpha }\to R=\frac{\sqrt{2Um}}{B\sqrt{q}sin\alpha }\left(1.5\right).\]

    Подставим данные для разных частиц, найдем отношение $\frac{R_p}{R_e}$:

    Источник: https://spravochnick.ru/fizika/postoyannoe_magnitnoe_pole/sila_lorenca/

    Что такое сила Лоренца, каковы величина и направления этой силы

    Наряду с силой Ампера, кулоновского взаимодействия, электромагнитными полями в физике часто встречается понятие сила Лоренца. Это явление является одним из основополагающих в электротехнике и электронике, на ряду с законом Кулона, электромагнитной индукцией Фарадея и прочими. Она воздействует на заряды, которые двигаются в магнитном поле. В этой статье мы кратко и понятно рассмотрим, что такое сила Лоренца и где она применяется.

    Определение

    Когда электроны движутся по проводнику – вокруг него возникает магнитное поле. В то же время, если поместить проводник в поперечное магнитное поле и двигать его – возникнет ЭДС электромагнитной индукции. Если через проводник, который находится в магнитном поле, протекает ток – на него действует сила Ампера.

    Её величина зависит от протекающего тока, длины проводника, величины вектора магнитной индукции и синуса угла между линиями магнитного поля и проводником. Она вычисляются по формуле:

    Рассматриваемая сила отчасти похожа на ту, что рассмотрена выше, но действует не на проводник, а на движущуюся заряженную частицу в магнитном поле. Формула имеет вид:

    Важно! Сила Лоренца (Fл) действует на электрон, движущийся в магнитном поле, а на проводник – Ампера.

    Из двух формул видно, что и в первом и во втором случае, чем ближе синус угла aльфа к 90 градусам, тем большее воздействие оказывает на проводник или заряд Fа или Fл соответственно.

    Итак, сила Лоренца характеризует не изменение величины скорости, а то, какое происходит воздействие со стороны магнитного поля на заряженный электрон или положительный ион. При воздействии на них Fл не совершает работы. Соответственно изменяется именно направление скорости движения заряженной частицы, а не её величина.

    Что касается единицы измерения силы Лоренца, как и в случае с другими силами в физике используется такая величина как Ньютон. Её составляющие:

    Как направлена сила Лоренца

    Чтобы определить направление силы Лоренца, как и с силой Ампера, работает правило левой руки. Это значит, чтобы понять, куда направлено значение Fл нужно раскрыть ладонь левой руки так, чтобы в руку входили линии магнитной индукции, а вытянутые четыре пальца указывали направление вектора скорости. Тогда большой палец, отогнутый под прямым углом к ладони, указывает направление силы Лоренца. На картинке ниже вы видите, как определить направление.

    Внимание! Направление Лоренцового действия перпендикулярно движению частицы и линиям магнитной индукции.

    При этом, если быть точнее, для положительно и отрицательно заряженных частиц имеет значение направление четырёх развернутых пальцев. Выше описанное правило левой руки сформулировано для положительной частицы. Если она заряжена отрицательно, то линии магнитной индукции должны быть направлены не в раскрытую ладонь, а в её тыльную сторону, а направление вектора Fл будет противоположным.

    Теперь мы расскажем простыми словами, что даёт нам это явление и какое реальное воздействие она оказывает на заряды. Допустим, что электрон движется в плоскости, перпендикулярной направлению линий магнитной индукции. Мы уже упомянули, что Fл не воздействует на скорость, а лишь меняет направление движения частиц. Тогда сила Лоренца будет оказывать центростремительное воздействие. Это отражено на рисунке ниже.

    Применение

    Из всех сфер, где используется сила Лоренца, одной из масштабнейших является движение частиц в магнитном поле земли. Если рассмотреть нашу планету как большой магнит, то частицы, которые находятся около северного магнитного полюсов, совершают ускоренное движение по спирали. В результате этого происходит их столкновение с атомами из верхних слоев атмосферы, и мы видим северное сияние.

    Тем не менее, есть и другие случаи, где применяется это явление. Например:

    • Электронно-лучевые трубки. В их электромагнитных отклоняющих системах. ЭЛТ применялись больше чем 50 лет подряд в различных устройствах, начиная от простейшего осциллографа до телевизоров разных форм и размеров. Любопытно, что в вопросах цветопередачи и работы с графикой некоторые до сих пор используют ЭЛТ мониторы.
    • Электрические машины – генераторы и двигатели. Хотя здесь скорее действует сила Ампера. Но эти величины можно рассматривать как смежные. Однако это сложные устройства при работе которых наблюдается воздействие многих физических явлений.
    • В ускорителях заряженных частиц для того, чтобы задавать им орбиты и направления.

    Заключение

    Подведем итоги и обозначим четыре основных тезиса этой статьи простым языком:

    1. Сила Лоренца действует на заряженные частицы, которые движутся в магнитном поле. Это вытекает из основной формулы.
    2. Она прямо пропорциональна скорости заряженной частицы и магнитной индукции.
    3. Не влияет на скорость частицы.
    4. Влияет на направление частицы.

    Её роль достаточно велика в «электрических» сферах. Специалист не должен упускать из вида основные теоретические сведения об основополагающих физических законах. Эти знания пригодятся, как и тем, кто занимается научной работой, проектированием и просто для общего развития.

    Напоследок рекомендуем просмотреть полезные видео для закрепления изученного материала:

    Теперь вы знаете, что такое сила Лоренца, чему она равна и как действует на заряженные частицы. Если возникли вопросы, задавайте их в комментариях под статьей!

    Материалы по теме:

    Источник: https://samelectrik.ru/chto-takoe-sila-lorenca-kakovy-velichina-i-napravleniya-etoj-sily.html

    Теория Лоренца

    Хендрик Антон Лоренц

    В 1892 г. голландский физик-теоретик Хендрик Антон Ло́ренц опубликовал работу «Электромагнитная теория Максвелла и её применение к движущимся телам», в которой объединил теорию поля и созданную им теорию электронного строения вещества.

    Лоренц предположил, что все молекулы вещества состоят из частиц, имеющих электрический заряд. Величина этих зарядов одинакова. Но одни из них заряжены отрицательно, другие положительно.

    Все эти элементарные заряды создают микроскопические электромагнитные поля, которые описываются уравнениями Максвелла.

    Конечно, теория Лоренца имела недостатки и отличалась от современной электронной теории. Но в этой работе учёный вывел формулу силы, действующей на электрический заряд со стороны электромагнитного поля. Эту силу впоследствии назвали силой Лоренца.

    Но что же такое электрический ток? Это направленное движение электрических зарядов. И если на каждую заряженную частицу действует сила Лоренца, то на отрезок проводника с током в электромагнитном поле должна действовать сила, величина которой равна сумме всех сил Лоренца, действующих на заряды, образующие электрический ток в проводнике.

    И такая сила была открыта задолго до Лоренца. Ещё не зная о существовании силы, действующей на отдельный электрический заряд, французский физик Мари Андре Ампер в 1820 г. описал силу, действующую со стороны электромагнитного поля на проводник с током. Её назвали силой Ампера.

    Связь между силой Ампера и силой Лоренца

    Действуя на проводник с током, магнитное поле воздействует на каждую заряженную частицу, создающую этот ток. А сила Ампера действует на весь проводник. Таким образом, сила Ампера равна сумме всех сил Лоренца, действующих на проводник с током.

    FA= F·N

    где F– сила Лоренца;

     N— число частиц.

    Отсюда F= FA /N

    I = nqvS

    N = nSl

    Подставив эти выражения в формулу, получим выражение для силы Лоренца в магнитном поле:

    F = qvBˑsinα.

    Это выражение позволяет вычислить силу Лоренца в магнитном поле. Но магнитное поле не существует отдельно. Изменяясь, вместе с электрическим полем они порождают друг друга, образуя электромагнитное поле.

    А оно в каждой точке своего пространства характеризуется напряжённостью электрического поля Еи индукцией магнитного поля В. И если электрически заряженная частица движется в электромагнитном поле, то на неё одновременно действуют и электрическое, и магнитное поле.

    Значит, величина силы Лоренца, действующая со стороны электромагнитного поля на частицу с зарядом q, движущуюся со скоростью v, зависит от этих величин:

    F = q(E + vxB)

    F, E, vиB) – векторные величины. 

    vxB– векторное произведение скорости движения частицы и индукции магнитного поля.

    Направление силы Лоренца, как и силы Ампера, определяют с помощью правила левой руки: «Если расположить ладонь левой руки таким образом, чтобы линии магнитного поля входили в неё перпендикулярно, а 4 пальца направить в сторону движения частицы с положительным зарядом, или против движения частицы с отрицательным зарядом, то отогнутый на 900 большой палец покажет направление силы Лоренца».

    Если заряженная частица движется параллельно силовым линиям магнитного поля, то величина силы Лоренца равна нулю, так как в этом случае α = 0, следовательно, sinα = 0

    F = qvBˑsinα= 0.

    Если же направление движения частицы перпендикулярно силовым линиям, то частица будет двигаться по окружности радиусом r, а сила Лоренца направлена к её центру, то есть является центростремительной силой.

    Согласно второму закону Ньютона сила Лоренца равна mv2/r.

    Отсюда

    При движении частицы под углом к силовым линиям её траектория представляет собой винтовую (спиральную) линию, имеющую радиус r и шаг винта h.

    Сила Лоренца не совершает работы, так как её направление всегда перпендикулярно направлению движения заряда.

    Сила Лоренца в технике

    Основное применение сила Лоренца нашла в электротехнике.

    На явлениях электромагнитной индукции и силы Лоренца основана работа электродвигателей и генераторов. Возникая в электромагнитном поле статора, она приводит во вращение ротор.

    Воздействие силы Лоренца на электроны используют в работе электронно-лучевых трубок (кинескопов), где магнитное поле, созданное специальными катушками, изменяет траекторию электронов. С помощью этой силы можно задавать орбиту движения частиц, что позволяет применять её в ускорителях заряженных частиц.

    Источник: http://ency.info/materiya-i-dvigenie/elektrichestvo-i-magnetizm/460-sila-lorentsa

    Сила ? Лоренца — как действует и в чем ? измеряется? Как определить силу Лоренца?

    Нигде еще школьный курс физики так сильно не перекликается с большой наукой, как в электродинамике. В частности, ее краеугольный камень – воздействие на заряженные частицы со стороны электромагнитного поля, нашло широкое применение в электротехнике.

    ЭТО ИНТЕРЕСНО:  Что такое номинальный режим

    Определение и формула силы Лоренца

    В школе очень часто показывают опыт с магнитом и железными опилками на бумажном листе. Если расположить его под бумагой и слегка потрясти, то опилки выстроятся по линиям, которые принято называть линиями магнитной напряженности. Говоря простыми словами, это силовое поле магнита, которое окружает его подобно кокону. Оно замкнуто само на себя, то есть не имеет ни начала, ни конца. Это векторная величина, которая направлена от южного полюса магнита к северному.

    Если бы в него влетела заряженная частица, то поле воздействовало бы на него очень любопытным образом. Она бы не затормозилась и не ускорилась, а всего лишь отклонилась в сторону. Чем она быстрее и чем сильнее поле, тем больше на нее действует эта сила. Ее назвали силой Лоренца в честь ученого-физика, впервые открывшего это свойство магнитного поля.

    Вычисляют ее по специальной формуле:

    FЛ=qvB,

    здесь q – величина заряда в Кулонах, v – скорость, с которой движется заряд, в м/с, а B – индукция магнитного поля в единице измерения Тл (Тесла).

    Магнитное поле. Силы

    Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

    Темы кодификатора ЕГЭ: сила Ампера, сила Лоренца

    В отличие от электрического поля, которое действует на любой заряд, магнитное поле действует только на движущиеся заряженные частицы. При этом оказывается, что сила зависит не только от величины, но и от направления скорости заряда.

    Рамка с током в магнитном поле

    В листках по термодинамике мы говорили о важности циклически работающих машин: они снабжают нас энергией. Понимание законов термодинамики позволило сконструировать тепловые двигатели, которые исправно служат нам и по сей день.

    Понимание же законов электромагнетизма дало возможность создать циклическую машину другого типа — электродвигатель.

    Мы рассмотрим один из элементов электродвигателя — рамку с током в магнитном поле. Разобравшись в её поведении, мы сможем уловить основную идею функционирования электродвигателя.

    Пусть прямоугольная рамка может вращаться вокруг горизонтальной оси (рис. 4, слева). Рамка находится в вертикальном однородном магнитном поле . Ток течёт по рамке в направлении ; это направление показано соответствующими стрелками.

    Рис. 4. Рамка с током в магнитном поле

    Вектор называется вектором нормали; он перпендикулярен плоскости рамки и направлен туда, глядя откуда ток кажется циркулирующим против часовой стрелки. (Иными словами, вектор сонаправлен с вектором индукции магнитного поля, которое создаётся током в рамке.) Поворот рамки измеряется углом между векторами и .

    Теперь определим направления сил Ампера, которые действуют на рамку со стороны магнитного поля. Эти силы расставлены на рисунке; вот вам ещё одно упражнение на правило часовой стрелки (левой руки) — обязательно проверьте правильность указанных направлений!

    Силы и , приложенные к сторонам и , действуют вдоль оси вращения. Они лишь растягивают рамку и не вызывают её вращение.

    Куда более интересны силы и , приложеные соответственно к сторонам и . Они лежат в горизонтальной плоскости и перпендикулярны оси вращения. Эти силы вращают рамку в направлении по часовой стрелке, если смотреть справа (рис. 4, правая часть). Вычислим момент этой пары сил относительно оси вращения рамки.

    Пусть длина стороны равна . Тогда

    Пусть длина стороны равна . Плечо силы , как видно из рис. 4 (справа) равно:

    Таким же будет плечо силы . Отсюда получаем момент сил, вращающий рамку:

    Теперь заметим, что — площадь рамки. Окончательно имеем:

    (3)

    В этой формуле площадь служит единственной геометрической характеристикой рамки.Это наводит на мысль, что только площадь рамки и существенна в выражении для вращающего момента. И действительно, можно доказать (разбивая рамку на бесконечно узкие полоски, неотличимые от прямоугольников), что формула (3) справедлива для рамки любой формы с площадью .

    Как видно из формулы (3), максимальный вращающий момент равен:

    Эта максимальная величина момента достигается при , то есть когда плоскость рамки параллельна магнитному полю.

    Вращающий момент становится равным нулю при и . Оба этих положения по-своему интересны.

    При плоскость рамки перпендикулярна полю, а векторы и направлены в разные стороны. Данное положение является положением неустойчивого равновенсия: стоит хоть немного шевельнуть рамку, как силы Ампера начнут её вращать в том же направлении, поворачивая вектор к вектору (убедитесь!).

    При плоскость рамки также перпендикулярна полю, а векторы и сонаправлены. Это — положение устойчивого равновенсия: при отклонении рамки возникает вращающий момент, стремящийся вернуть рамку назад (убедитесь!). Начнутся колебания рамки, постепенно затухающие из-за трения.

    В конце концов рамка остановится в положении ; в этом положении вектор индукции магнитного поля рамки сонаправлен с вектором индукции внешнего магнитного поля (вот почему при намагничивании вещества элементарные токи ориентируются так, что их поля направлены в сторону внешнего магнитного поля).

    Полезное сопоставление: рамка занимает такое положение, что её положительная нормаль ориентируется в том же направлении, что и северный конец стрелки компаса, помещённой в это магнитное поле.

    Таким образом, поведение рамки в магнитном поле становится ясным: если отклонить рамку от положения устойчивого равновесия и отпустить, то рамка будет совершать колебания.

    С точки зрения совершения механической работы это не очень хорошо: если намотать нить на ось вращения и подвесить к нити груз, то груз будет то подниматься, то опускаться.

    Но вот если исхитриться и заставить ток менять направление в нужные моменты, то вместо колебаний рамки начнётся её непрерывное вращение и, соответственно, непрерывный подъём подвешенного груза. Тогда-то и получится полноценный электродвигатель; идея с переменой направления тока реализуется с помощью коллектора и щёток.

    Источник: https://ege-study.ru/ru/ege/materialy/fizika/magnitnoe-pole-sily/

    Определение направления силы лоренца — Толкование слов

    Определение

    Сила , действующая на движущуюся заряженную частицу в магнитном поле, равная:

    называется силой Лоренца (магнитной силой).

    Исходя из определения (1) модуль рассматриваемой силы:

    где – вектор скорости частицы, q – заряд частицы, – вектор магнитной индукции поля в точке нахождения заряда, – угол между векторами и. Из выражения (2) следует, что если заряд движется параллельносиловым линиям магнитного поля,то сила Лоренца равна нулю. Иногда силу Лоренца стараясь выделить, обозначают, используя индекс:

    Вычислить, найти силу Лоренца действующую на электрон или протон

    Для определения радиуса круговой траектории электрона приравняем силу Лоренца и центростремительную силу.

    Если

    r me e v B
    радиус круговой траектории электрона, метр
    9,11 · 10-31 кг — масса электрона, кг
    1,602 · 10-19 Кл — элементарный электрический заряд, Кулон
    скорость электрона, м/с
    магнитная индукция, Тесла

    то, приравнивая обе силы, получаем

    \[ evB = \frac{m_{e} · v{2}}{r} \]

    и, следовательно,

    \[ r = \frac{m_{e} · v}{eB} \]

    Электрический заряд протона равен по модулю заряду электрона, но имеет положительный знак.

    \[ p = + 1.602 · 10{-19} Кл. \]

    При определении направления движения протонов с помощью правила левой руки направление движения протонов совпадает с техническим направлением тока и с картинкой.

    Таким образом электрон и протон влетая в магнитное поле в одном направлении будут отклоняться в разные стороны.

    Сила Лоренца действующая на протон

    Величина силы действующая на электрон и на протон будет одинакова (определяется формулой №3), но поскольку протон гораздо тяжелее электрона, радиус закручивания для протона будет больше.

    Радиус траектории протона в магнитном поле

    Если

    r mp p v B
    радиус круговой траектории протона, метр
    1,67 · 10-27 кг — масса протона, кг
    1,602 · 10-19 Кл — элементарный электрический заряд, Кулон
    скорость протона, м/с
    магнитная индукция, Тесла

    Радиус траектории для протона будет вычисляться по аналогичной формуле

    \[ r = \frac{m_{p} · v}{pB} \]

    Из этой формулы видно что при одинаковых скоростях электрона и протона радиус траектории протона будет значительно больше, чем у электрона пропорционально отношению масс этих частиц

    В помощь студенту

    Источник: https://www.fxyz.ru/%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D1%8B_%D0%BF%D0%BE_%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B5/%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D1%82%D0%B2%D0%BE/%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D0%B5_%D0%BF%D0%BE%D0%BB%D0%B5/%D1%81%D0%B8%D0%BB%D1%8B_%D0%B4%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D1%83%D1%8E%D1%89%D0%B8%D0%B5_%D0%B2_%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D0%BC_%D0%BF%D0%BE%D0%BB%D0%B5/%D1%81%D0%B8%D0%BB%D0%B0_%D0%BB%D0%BE%D1%80%D0%B5%D0%BD%D1%86%D0%B0/

    Сила Лоренца: определение, формулы, правило левой руки

    В статье расскажем про магнитную силу Лоренца, как она действует на проводник, рассмотрим правило левой руки для силы Лоренца и момент силы действующий на контур с током.

    Сила Лоренца — это сила, которая действует на заряженную частицу, падающую с определенной скоростью в магнитное поле. Величина этой силы зависит от величины магнитной индукции магнитного поля B, электрического заряда частицы q и скорости v, с которой частица падает в поле.

    То, как магнитное поле B ведет себя по отношению к нагрузке полностью отличается от того, как это наблюдается для электрического поля Е. Прежде всего, поле B не реагирует на нагрузку. Однако когда нагрузка перемещается в поле B, появляется сила, которая выражается формулой, которую можно рассматривать как определение поля B:

    Таким образом, видно, что поле B выступает в качестве силы, перпендикулярной к направлению вектора скорости V нагрузок и направление вектора B. Это можно проиллюстрировать на диаграмме:

    На диаграмме q положительный заряд!

    Единицы поля B могут быть получены из уравнения Лоренца. Таким образом, в системе СИ единица B равна 1 тесла (1T). В системе CGS полевой единицей является Гаусс (1G). 1T = 104G

    Движение заряда в поле B показано на анимации

    Для сравнения показана анимация движения как положительного, так и отрицательного заряда.

    Когда поле B охватывает большую площадь, заряд q, движущийся перпендикулярно направлению вектора B, стабилизирует свое движение по круговой траектории. Однако, когда вектор v имеет компонент, параллельный вектору B, тогда путь заряда будет спиралью, как показано на анимации

    Сила Лоренца на проводник с током

    Сила, действующая на проводник с током, является результатом силы Лоренца, действующей на движущиеся носители заряда, электроны или ионы. Если в разделе направляющей длиной l, как на чертеже

    полный заряд Q движется, тогда сила F, действующая на этот сегмент, равна

    Частное Q / t является значением протекающего тока I и, следовательно, сила, действующая на участок с током, выражается формулой

    Чтобы учесть зависимость силы F от угла между вектором B и осью отрезка, длина отрезка l была задана характеристиками вектора.

    Только электроны движутся в металле под действием разности потенциалов; ионы металлов остаются неподвижными в кристаллической решетке. В растворах электролитов анионы и катионы подвижны.

    Правило левой руки сила Лоренца

    Правило левой руки сила Лоренца — определяющее направление и возврат вектора магнитной (электродинамической) энергии.

    Если левая рука расположена так, что линии магнитного поля направлены перпендикулярно внутренней поверхности руки (чтобы они проникали внутрь руки), а все пальцы — кроме большого пальца — указывают направление протекания положительного тока (движущаяся молекула), отклоненный большой палец указывает направление электродинамической силы, действующей на положительный электрический заряд, помещенный в это поле (для отрицательного заряда, сила будет противоположная).

    Второй способ определения направления электромагнитной силы заключается в расположении большого, указательного и среднего пальцев под прямым углом. При таком расположении указательный палец показывает направление линий магнитного поля, направление среднего пальца — направление движения тока, а также направление большого пальца силы. 

    Момент силы, действующий на контур с током в магнитном поле

    Момент силы, действующей на контур с током в магнитном поле (например, на проволочную катушку в обмотке электродвигателя), также определяется силой Лоренца. Если петля (отмеченная на схеме красным цветом) может вращаться вокруг оси, перпендикулярной полю B, и проводит ток I, то появляются две неуравновешенные силы F, действующие в стороны от рамы, параллельной оси вращения.

    Момент этих сил М

    Определим вектор магнитного момента контура

    Теперь мы можем сохранить крутящий момент в виде

    Эти силы, действующие на элементы петли перпендикулярно оси вращения, направлены и взаимно компенсируются.

    Источник: https://meanders.ru/sila-lorenca.shtml

    Понравилась статья? Поделиться с друзьями:
    ЭлектроМастер
    Как подключить двигатель от стиральной машины

    Закрыть