Что такое средство измерения

Средства измерения. Поверка и калибровка. Как, когда и зачем?

что такое средство измерения

Ссредства измерений — технические средства, используемые при измерениях и имеющие нормированные метрологические характеристики, т.е. характеристики, влияющие на результаты и на точность измерений. По конструктивному исполнению и форме представления измерительной информации средства измерений подразделяются на меры, измерительные приборы, измерительные установки, измерительные системы, измерительные преобразователи.

Мера — средство измерений, предназначенное для воспроизведения одного или нескольких фиксированных значений физической величины (мера массы – гиря, мера индуктивности – образцовая катушка индуктивности, многозначная мера индуктивности – магазин индуктивностей).

Измерительный прибор — средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем. В зависимости от формы представления информации различают аналоговые и цифровые приборы.

Аналоговым называют измерительный прибор, показания которого являются непрерывной функцией измеряемой величины, например стрелочный вольтметр, ртутно-стеклянный термометр.

В цифровом приборе осуществляется преобразование аналогового сигнала измерительной информации в цифровой код, и результат измерения отражается на цифровом табло.

Измерительная установка — совокупность функционально объединенных средств измерений и вспомогательных устройств, предназначенная для выработки сигнала измерительной информации в форме, удобной для непосредственного восприятия наблюдателем и расположенная в одном месте.

Измерительная система — совокупность средств измерений и вспомогательных устройств, соединенных между собой каналами связи, предназначенная для выработки сигналов измерительной информации в форме, удобной для автоматической обработки, передачи и (или) использования в системах управления, контроля, диагностирования и т.п.

Измерительный преобразователь — средство измерений, предназначенное для преобразования сигналов измерительной информации в форму, целесообразную для передачи, обработки или хранения.

Измерительная информация на выходе измерительного преобразователя, как правило, недоступна для непосредственного восприятия наблюдателем. Измерительные преобразователи очень разнообразны, однако, все они обладают нормированными метрологическими характеристиками.

Так, к измерительным преобразователям относятся термопары, измерительные трансформаторы тока и напряжения, измерительные усилители и др.

Что такое калибровка

Калибровка средств измерений (СИ) пришла на смену государственной поверке, которая являлась обязательной, а её результаты были действительны и актуальны в течение всего межповерочного интервала. С изменением законодательства поверка стала проводиться только в отношении перечисленных в законе СИ. Во всех остальных случаях проводится калибровка средств измерений. Проводится она в соответствии с ГОСТ Р 8.879-2014.

Все СИ в зависимости от национальной системы мер проградуированы в единых единицах. Это необходимо для обеспечения единообразия измерений во всех уголках страны. Ежечасно в одной стране происходят тысячи измерений.

И чрезвычайно важно, чтобы они все были единообразны, а их погрешности не превышали установленных допусков. Для обеспечения единообразия создана система эталонов мер. Национальная система мер обязательно согласована с мировой системой измерений.

Основная задача калибровки – обеспечение единства измерений на национальном уровне и, как следствие, на межгосударственном.

Зачем и когда нужна калибровка средств измерения

СИ необходимо калибровать, то есть измерять допустимую погрешность относительно эталона после изготовления оборудования, после его ремонта, при активной эксплуатации, после покупки бывшего в употреблении оборудования, аренды, импортировании.

Калибровку выполняют специальные калибровочные или метрологические лаборатории с использованием эталонов. Разработано достаточно много методик для калибрования.

Результатом является либо калибровочный знак, наносимый непосредственно на СИ или запись в технических документах о размере выявленной погрешности.

Таким образом, калибровочный процесс, как и раньше поверка, выявляет степень пригодности СИ для дальнейшей эксплуатации, проверяет достоверность даваемых показаний. Наличие сертификата о калибровке повысит доверие к производителю любой продукции.

Если выявлена разбалансировка средств измерения, превышающая допустимые значения, прибор считается к эксплуатации не пригодным. Благодаря специальному современному ПО во многих случаях возможно откорректировать измеряемые параметры методом юстировки прибора. Это возможно в случаях, если измеряемые параметры основательно выходят за пределы допуска или же только критически к ним приближаются. Юстировочный или перекалибровочный процесс вносит поправочные коэффициенты в СИ.

Благодаря вовремя выявленному при калибровке сбою и проведенной юстировке, можно намного продлить жизненный цикл измерительного оборудования, минимизировав стоимость возможного дорогого ремонта. Результаты калибровки, оформленные соответствующей документацией, могут быть использованы в качестве доказательств в суде.

Поверка средств измерения

Поверка служит подтверждением правильности измерений действующими СИ.

Средства измерений до ввода в эксплуатацию, а также после ремонта подлежат первичной поверке, а в процессе эксплуатации — периодической поверке. Применяющие средства измерений в сфере государственного регулирования обеспечения единства измерений юридические лица и индивидуальные предприниматели обязаны своевременно представлять эти средства измерений на поверку.

Поверку средств измерений осуществляют аккредитованные в соответствии с законодательством Российской Федерации  юридические лица и индивидуальные предприниматели.Каждому конкретному СИ назначается периодичность поверки, которая указывается в паспорте. Например типичные счетчики холодной воды должны поверяться раз в 6 лет, а горячей — раз в 4 года.

Статья подготовлена по материалам сайта tms-cs.ru.

Источник: https://www.radioingener.ru/zachem-provodit-kalibrovku-sredstva-izmereniya/

Виды средств измерений в метрологии / Классификация измерительных приборов

что такое средство измерения

Средствами измерений (СИ) называются технические средства, применяемые для измерения единицы физической величины (ФВ) на практике. Для СИ установлены нормированные погрешности.

Средства измерений классифицируются по следующим критериям:

  • вид;
  • принцип действия;
  • метрологическое назначение.

К основным видам средств измерений относятся следующие:

  • эталон;
  • мера;
  • измерительный преобразователь;
  • измерительный прибор;
  • измерительная установка;
  • измерительная система.

Мера, эталон

Мерой является средство измерений, которое предназначено для воспроизведения заданного размера физической величины. К примеру, гиря является мерой массы, резистор – мерой электрического сопротивления.

Различают одно- и многозначные меры, а кроме того, наборы и магазины мер.

С помощью однозначной меры воспроизводится величина лишь одного размера. Примером такой меры является гиря. Многозначными мерами воспроизводятся несколько размеров ФВ. Примером многозначной меры может служить миллиметровая линейка, с помощью которой можно выразить длину предмета как в миллиметрах, так и в сантиметрах.

Меры с наивысшим порядком точности называются эталонами, подробнее о которых вы можете прочитать в материале «Средства измерения в метрологии».

 

Под измерительным преобразователем подразумевается СИ, которое преобразует сигнал измерительной информации в форму, удобную для его передачи, последующего преобразования, а затем обработки и хранения, но при этом сигнал в таком виде не предназначен для непосредственного восприятия наблюдателем.

Этот сигнал подается в показывающее устройство, с которого и происходит это непосредственное восприятие. По данной причине преобразователь либо входит в конструкцию измерительного прибора, либо совместно с ним применяется.

К примеру, использоваться преобразователь может с целью передачи данных в память компьютера. Преобразуемая величина носит название входной, а итог преобразования называется выходной величиной. Основная метрологическая характеристика преобразователя и определяется соотношением этих величин (входной и выходной), которое носит название «функция преобразования».

Измерительный прибор. Классификация измерительных приборов

Измерительным прибором называется СИ, которое, в отличие от преобразователя, служит для выработки сигнала в форме, которая доступна для непосредственного восприятия наблюдателем.

Существуют различные классификации измерительных приборов, это:

  • назначение;
  • конструктивное устройство;
  • степень автоматизации.

Назначение измерительных приборов

По данному признаку различают измерительные приборы (ИП):

  • универсальные, применяемые в контрольно-измерительных лабораториях всех типов производств, а кроме того в цехах мелкосерийных и единичных производств;
  • специальные, применяемые для измерения одного или нескольких параметров деталей определенного типа;
  • для контроля: приемочного (калибры), активного (при изготовлении деталей) или статистического.

Конструктивное устройство

По этому признаку различают приборы:

  • механические: штангенциркуль, микрометр, щупы, рычажные скобы и т.д.;
  • оптические: микроскоп, проектор, оптиметр и др.;
  • пневматические: длинномеры, или ротаметры, и т.д.;
  • электрические: индуктивные приборы, кругломеры, профилографы и др.

Степень автоматизации

По данному признаку приборы бывают:

  • ручного действия;
  • механизированными;
  • полуавтоматическими;
  • автоматическими.

Измерительная установка

Измерительная установка – это совокупность СИ (меры, измерительные приборы и преобразователи) и вспомогательных устройств, объединенных функционально. Предназначение составляющих измерительной установки – выработка сигналов в удобной для непосредственного восприятия наблюдателем форме. Сама измерительная установка располагается на одном месте (испытательный стенд).

Измерительная система

Измерительная система представляет собой такую же совокупность, но составляющие ее звенья соединены между собой каналами связи, которые размещены в разных точках контролируемого пространства. Цель измерительной системы – измерить одну или несколько ФВ, которые свойственны данному пространству.

Вас также может заинтересовать:

Источник: http://gauss-instruments.ru/vidy-sredstv-izmerenij/

Система единиц физических величин

что такое средство измерения

Греческое слово «метрология» состоит из 2-х слов «метрон» — мера и «логос» — учение.

Средства метрологии – это совокупность средств измерений и метрологических стандартов, обеспечивающих их рациональное использование

Без измерений не может обойтись ни одна наука.

Основное понятие метрологии – измерение.

Измерение – это нахождение значения физической величины (ФВ) опытным путем с помощью специальных технических средств (ГОСТ 16263-70).   

Измерения могут быть представлены тремя аспектами:

—     философский аспект измерения: измерения являются важнейшим универсальным методом познания физических явлений и процессов

—     научный аспект измерения: с помощью измерений (эксперимента) осуществляется связь теории и практики («практика – критерий истины»)

—     технический аспект измерений: измерения обеспечивают получение количественной информации об объекте управления или контроля.

Все объекты окружающего мира характеризуются своими свойствами. Свойство – категория качественная. Для количественного описания различных свойств, процессов и физических тел вводится понятие величины.

ЭТО ИНТЕРЕСНО:  Что измеряется в джоулях

Величина – это свойство чего-либо, которое может быть оценено тем или иным способом, в том числе количественно.

Исходя из принципов получения значения величины их можно разделить на:

—     идеальные величины;

—     реальные величины.

Идеальные величины служат моделью конкретных реальных понятий

Например, гармонический процесс математически может быть описан синусоидальной функцией.

где: Ym – амплитуда колебаний (величина);

         f – частота колебаний (величина);

         j — сдвиг фазы (величина).

            Реально синусоидальное колебание воспроизвести невозможно (хотя бы потому, что реальный процесс всегда конечен) – это математическая модель.

Реальные величины – это измеренные (т.е. полученные в результате эксперимента) свойства физических объектов или процессов, с помощью которых они могут быть изучены.

Стандарт ГОСТ 16263-70 трактует физическую величину (ФВ) как одно из свойств физического объекта, в качественном отношении общее для многих физических объектов (например, «сопротивление» относится ко всем резисторам), а в количественном – индивидуальное для каждого из них (5 Ом – конкретный резистор).

Следует отметить, что не все физические величины могут быть выражены количественно в виде определенного числа единиц измерения. К ним относятся только измеряемые ФВ.

Например, с помощью вольтметра мы измеряем ФВ – напряжение и получаем конкретный результат: 10В. Некоторые ФВ, в силу их природы или специфики, не могут быть измерены. Для них по ряду причин не может быть введена единица измерения. Такие ФВ могут быть только оценены.

Оцениваемые ФВ – те, которым по установленным правилам приписывается определенное число. Обычно это осуществляется при помощи шкал.

Шкала величины – упорядоченная последовательность ее значений, принятая по соглашению на основании результатов точных измерений (Рекомендации по метрологии МИ 2365-96).

Вещественные ФВ – описывают физические и физико-химические свойства вещества, материалов (масса, емкость, индуктивность и т.п.)

Энергетические ФВ – описывают энергетические характеристики процессов преобразования, передачи энергии (мощность, напряжение и пр.).

ФВ, характеризующие протекание процессов во времени − спектральные характеристики, корреляционные функции и т.п.

Размер физической величины – количественное содержание в данном объекте свойства, соответствующего понятию ФВ.

Сегодня в подавляющем большинстве стран мира принята метрическая система ФВ.

В 2000г. на эту систему перешла Англия. Среди немногих стран, где она не введена – США. Исторически в разных странах вводились свои единицы ФВ и их названия. Очень часто они связывались с параметрами конечностей человека (локоть, аршин, фут). Сумятицу в системы ФВ вносили и различные системы счисления (единичная, десятичная, двенадцатиричная, и т.п.).

 До последнего времени сохранились древние измерения (фут, фунт, аршин и т.п.), причем в разных странах они имеют разное значение по отношению к метру, килограмму.

С развитием науки, промышленности возникла естественная необходимость свести единицы измерения однородных ФВ к единой системе.

В первую очередь необходимо отметить Францию,  в которой в 1799г. была введена метрическая система мер. Она была создана в эпоху Великой французской революции и должна была служить «на все времена, для всех народов, для всех стран».

В основе этой системы – десятичная система: значения величин связаны соотношением 10n  (где n -2,-1,0,1,2,).

К этому времени были введены единицы ФВ: 

«ДЛИНА»

часть «нулевого» меридиана

«МАССА» 1 килограмм – масса 1дм3 воды при температуре 4оС  и др.

                В 1832г. Карл Гаусс измерил напряженность магнитного поля Земли, выразив ее через длину, силу, массу и время и ввел первый фундаментальный набор механических единиц (за основу были взяты мм, мг, с; система ММС).

                В 1851г. Вильгельм Вебер впервые ввел полную систему электрических величин.

                В 1871г. 17 государств (в том числе Россия) подписали Метрическую Конвенцию.

                До настоящего времени широкое распространение имеют 2 системы единиц:

—         Симметричная или Гауссова: CГC (основные единицы: сантиметр, грамм, секунда).

—         Международная система единица СИ. (SI)

Система CГC существует более 100 лет и до сих пор используется в точных науках (физика, астрономия). Но ее все более теснит система СИ – единственная международная система единиц ФВ, которая принята и используется в большинстве стран мира.

Источник: https://infoks.ru/index.php/produkty/tekhnicheskaya-ucheba-aim/88-metrologiya

1.5. Виды средства измерений

:

Средство измерений (СрИзм) — это техническое средство (или комплекс средств), используемое при измерениях и имеющее нормированные метрологические характеристики.

СрИзм позволяют не только обнаружить физическую величину, но и измерить ее, т.е. сопоставить неизвестный размер с известным.

Если физическая величина известного размера есть в наличии, то она непосредственно используется для сравнения (измерение плоского угла транспортиром, массы – с помощью весов с гирями).

Если же физической величины известного размера в наличии нет, то сравнивается реакция (отклик) прибора на воздействие измеряемой величины с проявившейся ранее реакцией на воздействие той же величины, но известного размера (измерений силы тока амперметром).

СрИзм можно классифицировать по двум признакам:

  1. конструктивное исполнение;
  2. метрологическое назначение.

По конструктивному исполнению СрИзм подразделяют на меры, измерительные преобразователи; измерительные приборы, измерительные установки, и системы, измерительные принадлежности.

Мера

Это средство измерения, предназначенное для воспроизведения физических величин заданного размера. К данному виду средств измерений относятся гири, концевые меры длины и т.п. На практике используют однозначные и многозначные меры, а также наборы и магазины мер.

Однозначные меры воспроизводят величины только одного размера (гиря).

К однозначным мерам можно отнести стандартные образцы (СО). СО состава вещества (материала) – стандартный образец с установленными значениями величин, характеризующих содержание определенных компонентов в веществе (материале).

СО свойств веществ (материалов) – стандартный образец с установленными значениями величин, характеризующих физические, химические, биологические и другие свойства.

Многозначные меры воспроизводят несколько размеров физической        величины. Например, миллиметровая линейка дает возможность выразить длину предмета в сантиметрах и в миллиметрах.

Измерительные преобразователи

СрИзм, предназначенные для преобразования измеряемой величины в другую однородную или неоднородную величину с целью представления измеряемой величины в форме, удобной при обработке, хранении, передаче в показывающее устройство. Измерительные преобразователи не имеют устройств отображения измерительной информации, поэтому они входят в измерительные приборы или применяются вместе с ними.

Различают:

  • Первичные преобразователи — предназначены для непосредственного восприятия измеряемой величины, как правило, неэлектронной и преобразовывая ее в электрическую (например, датчики).
  • Промежуточные преобразователи – преобразователи, расположенные в измерительной цепи первичного преобразователя и обычно по измеряемой физической величине, однородные с ним.

Пример: овременные измерительные преобразователи нередко оснащаются и цифровыми, и аналоговыми выходными цепями. Примерами таких преобразователей являются Е854ЭЛ, Е856ЭЛ и Е849ЭЛ

Совокупность конструктивно объединенных первичных и промежуточных преобразователей носит название «измерительные приборы».

Измерительные приборы

Комплектная измерительная установка PN25 тип LC/LCR для газовозов или стационарных систем

Это средства измерений, которые позволяют получать измерительную информацию в форме, удобной для восприятия пользователем. Различают измерительные приборы прямого действия и приборы сравнения.

  • Приборы прямого действия отображают измеряемую величину на показывающем устройстве, имеющем соответствующую градуировку в единицах этой величины. Изменения рода физической величины при этом не происходит. К приборам прямого действия относят, например, амперметры, вольтметры, термометры и т.п.
  • Приборы сравнения предназначаются для сравнения измеряемых величин с величинами, значения которых известны, например, аналитические весы. Такие приборы широко используются в научных целях.

Измерительные установки и системы

Это совокупность средств измерений, объединённых по функциональному признаку со вспомогательными устройствами, для измерения одной или нескольких физических величин объекта измерений. Обычно такие системы автоматизированы и обеспечивают ввод информации в систему, автоматизацию самого процесса измерения, обработку и отображение результатов измерений для восприятия их пользователем.

Измерительные принадлежности

Это вспомогательные средства измерений величин. Они необходимы для вычисления поправок к результатам измерений, если требуется высокая степень точности.

По метрологическому назначению СрИзм делят на два вида – рабочие средства измерений и эталоны.

Рабочие средства измерений

Калибратор-измеритель унифицированных сигналов эталонный ИКСУ-2012ПК

Применяют для определения параметров (характеристик)  технических устройств, технологических процессов, окружающей среды и др.

Производственные средства обладают устойчивостью к воздействиям различных факторов производственного процесса:  температуры, влажности, вибрации и т.п., что может сказаться на достоверности и точности показаний приборов.

Полевые средства работают в условиях, постоянно изменяющихся в широких пределах внешних воздействий.

Эталон

Это высокоточная мера, предназначенная для воспроизведения и хранения единицы величины с целью передачи её размера другим средствам измерений. От эталона единица величины передаётся разрядным эталонам, а от них – рабочим средствам измерений. Эталоны классифицируют на:

  • Первичный эталон – это эталон,  воспроизводящий единицу физической величины с наивысшей точностью, возможной в данной области измерений на современном уровне  научно-технических достижений. Первичный эталон может быть национальным (государственным) и международным.
  • Вторичные эталоны могут утверждаться либо Госстандартом РФ, либо государственными научными метрологическими центрами, что связано с особенностями их использования.
  • Рабочие эталоны воспринимают размер единицы от вторичных эталонов и в свою очередь служат для передачи размера менее точному рабочему эталону (или эталону более низкого разряда и рабочим средствам  измерений.

Презентация на тему Классификация видов средств измерений  

57

Источник: https://suplicio.ru/2011-09-10-16-07-06/62-15-measuring-instruments.html

Классификация средств измерений

Средства измерений классифицируются по весьма разнообразным признакам, которые в большинстве случаев взаимно независимы и в каждом средстве измерений могут находиться почти в любых сочетаниях.

К числу этих признаков относятся: тип и вид контролируемых физических величин; назначение; число проверяемых параметров при одной установке объекта измерения; принцип действия; способ образования показаний; способ получения числового значения измеряемой величины; точность; условия применения; степень защищенности от внешних магнитных и электрических полей; прочность и устойчивость против механических воздействий и перегрузок; стабильность; чувствительность; пределы и диапазоны измерений; роль, выполняемой в системе обеспечения единства измерений; уровень автоматизации; уровень стандартизации; отношению к измеряемой физической величине.

ЭТО ИНТЕРЕСНО:  Что такое акб в машине

Классификация СИ по типу контролируемых величин

Классификация средств измерения и контроля по типу контролируемых физических величин представлена на рис. 7.8.

Рис. 7.7. Классификация средств измерения и контроля по типу физических величин

В условиях расширяющейся автоматизации технологических процессов обработки деталей и сборки узлов и агрегатов машин, повышения требований к производительности, точности и качеству обработки при массовом производстве машин все большее значение приобретают автоматические средства контроля. Они классифицируются по числу проверяемых параметров, степени автоматизации, способу преобразования измерительного импульса, месту установки в технологическом процессе, воздействию на технологический процесс (рис. 7.8).

Отнесение контрольных операций к ручным, полуавтоматическим или автоматическим можно выполнять по отношению времени, затрачиваемому на ручные операции, к общему (суммарному) времени контроля tx. Если tp/tz< 0,5, то контроль считается ручным (например, контроль ручными калибрами или шкальными средствами измерения).

Если 0,02 < tv/tz< 0,5, то контроль считается полуавтоматическим (например, установка объекта контроля на стол контрольного приспособления выполняется вручную, а последующий процесс контроля показаний - автоматически).

Если tp/tz < 0,02, то контроль считается автоматическим (установка объекта контроля, его измерение, оценка результатов и снятие объекта контроля выполняются без участия оператора).

По назначению

По назначению СИ делятся на универсальные и специальные;

По числу проверяемых параметров

По числу проверяемых параметров при одной установке объекта измерения — одномерные и многомерные;

Ту или иную величину можно измерять при помощи средств измерений, отличающихся одно от другого принципом действия. Различия этих принципов связаны с использованием различных физических явлений. Например, для измерения длины применяют механические, оптические, пневматические и электрические устройства.

Кроме того, могут быть различными способы использования одного и того же физического явления. Так, различие принципа действия электроизмерительных устройств, в которых используется взаимодействие электрического тока и магнитного потока, заключается в способе получения, форме и характере магнитного потока.

По способу образования показаний

По способу образования показаний измерительные приборы можно разделить на три основные группы: показывающие, самопишущие и приборы с наводкой.

Рис. 7.8. Классификация автоматических средств контроля

Показывающие измерительные приборы, если на них воздействует измеряемая величина, дают показание, не требуя от наблюдателя каких-либо дополнительных операций. Указатель отсчетного устройства перемещается без воздействия человека и наблюдается визуально.

Самопишущие измерительные приборы, кроме шкалы и указателя, содержат механизм, записывающий показания прибора и измерения изменяющейся величины в виде диаграммы.

Измерительные приборы с наводкой требуют обязательного вмешательства человека, который перемещением тех или иных талей или подбором мер добивается достижения определенного эффекта-обычно приведения к нулю показания нулевого индикатора. По достижении этого положения производится отсчет показаний по отсчетному приспособлению или по сумме подобранных мер.

По способу получения значения измеряемой величины приборы можно разделить на две группы: приборы непосредственной оценки и компарирующие приборы (приборы сравнения).

Для каждого средства измерения устанавливают границы условий их применения, имея в виду, что .именно в пределах этих границ нормируются и обеспечиваются те их свойства, которые определяют уровень точности их показаний.

Постоянно действующей, влияющей на средства измерений, величиной является магнитное тюле Земли. В каждой точке поверхности Земли оно приблизительно постоянно. Магнитное поле Земли и другие магнитные поля влияют на показания ряда средств измерений, принцип действия которых основан на использовании магнитных и электромагнитных явлений.

Магнитные поля, возникающие в современных технических устройствах, во много раз сильнее магнитного поля Земли, поэтому от них необходимо защищать даже не очень чувствительные средства измерений.

Так как защита от влияния магнитных полей всегда усложняет и удорожает средства измерений, то применяют не только при наличии таких магнитных полей, которые могут повлиять на него. В зависимости от напряженности магнитных полей используют средства измерений, соответствующим образом защищенные от них.

Для электроизмерительных приборов разработана классификация по степени защищенности их от влияния магнитных полей. Введены две категории защищенности: I и II. Категории I соответствует большая степень защищенности (ГОСТ 1845-59).

На показания измерительных приборов, основанных на использовании электростатистических явлений, влияют электрические поля. На степени защищенности от влияния электрических полей также введены категории.

Классификация по прочности и устойчивости против механических воздействий и перегрузок

Существуют внешние явления, воздействие которых не выражается в непосредственном влиянии на показания средств измерений, но они могут явиться причиной порчи и нарушения действий механизма. На средства измерений могут воздействовать вода, другие жидкости и газы, пыль и т. д.

От воздействия этих факторов средства измерений защищают кожухами или выполняют их в корпусах из особых материалов с применением защитных покрытий.

По степени защиты от внешних воздействий различают средства измерений обыкновенные, пылезащищенные, брыз-гозащищенные, водозащищенные, герметические, газозащищенные, взрывобезопасные.

Классификация по стабильности показаний средств измерений. Значения мер или показания измерительных приборов изменяются нередко и без воздействия внешних факторов по истечении более или менее длительного времени. Причиной таких изменений в большинстве случаев являются внутренние структурные изменения материалов, из .которых изготовлены основные детали средства измерения. Таким изменениям, называемым старением, в большей степени подвержены сплавы металлов и органические материалы.

По роли, выполняемой в системе обеспечения единства измерений

По роли, выполняемой в системе обеспечения единства измерений, СИ делятся на:

  • метрологические, предназначенные для метрологических целей — воспроизведения единицы и (или) ее хранения или передачи размера единицы рабочим СИ;
  • рабочие, применяемые для измерений, не связанных с передачей размера единиц.

Подавляющее большинство используемых на практике СИ принадлежат ко второй группе. Метрологические средства измерений весьма немногочисленны. Они разрабатываются, производятся и эксплуатируются в специализированных научно-исследовательских центрах.

По уровню стандартизации

По уровню стандартизации средства измерений подразделяются на:

  • стандартизованные, изготовленные в соответствии с требованиями государственного или отраслевого стандарта;
  • нестандартизованные (уникальные), предназначенные для решения специальной измерительной задачи, в стандартизации требований к которым нет необходимости.

Основная масса СИ являются стандартизованными. Они серийно выпускаются промышленными предприятиями и в обязательном порядке подвергаются государственным испытаниям. Нестандартизованные средства измерений разрабатываются специализированными научно-исследовательскими организациями и выпускаются единичными экземплярами. Они не проходят государственных испытаний, их характеристики определяются при метрологической аттестации.

По отношению к измеряемой физической величине

По отношению к измеряемой физической величине средства измерений делятся на:

  • основные — это СИ той физической величины, значение которой необходимо получить в соответствии с измерительной задачей
  • вспомогательные — это СИ той физической величины, влияние которой на основное средство измерений или объект измерения необходимо учесть для получения результатов измерения требуемой точности.

Похожие материалы

Источник: https://www.metalcutting.ru/content/klassifikaciya-sredstv-izmereniy

Что такое средства измерения?

» Прочее »

Вопрос знатокам: что такое измерительный прибор

С уважением, Евгений Коровин

Лучшие ответы

Прибор, которым ты измеряешь какую-либо величину. Для каждой величины прибор обычно свой.

Измерительный прибор — средство измерений, предназначенное для получения значений измеряемой физической величины в установленном диапазоне.

которым можно замерить нужную велечину

да например манометр спидометр уровнемер расходомер термометр

это прибор который измеряет какие-либо силы.

концелярская линейка не мереет силу!

нет такого понятия есть СРЕДСТВО ИЗМЕРЕНИЯ бывает сертифицированное и несертифицированное (которое нельзя применять например для особо опасных.. . при выполнении расчетов и т. д. ) см. ГОСТ 22261-94 ГОСТ 8.326-89 ГОСТ 26104

ГОСТ 19300

есть и поверенные по госту КОНЦЕЛЯРСКИЕ ЛИНЕЙКИ!

про погрешность тоже не забывайте! самае собсна главнае В ЛЮБОМ СРЕДСТВЕ ИЗМЕРЕНИЯ!

даже часы это измерительный прибор. это такой прибор который измеряет какую либо вилечину

ответ

Это видео поможет разобраться

Ответы знатоков

Средство измерений — техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики. На кухне это: термометр, весы, часы, сантиметр и мерные емкости.

ИЗМЕР˜ЕНИЕ — действие, выполняемое при помощи средств измерений с целью нахождения числового значения измеряемой величины в принятых единицах измерения. Получившееся значение называется числовым значением измеряемой величины, числовое значение совместно с обозначением используемой единицы называется значением физической величины.

Измерение физической величины проводится с помощью мер, измерительных приборов, измерительных преобразователей, систем, установок. Измерение физической величины включает в себя: сравнение измеряемой величины с единицей измерения и преобразование в форму, удобную для использования (различные способы индикации).

Различают прямые измерения (например, измерение длины проградуированной линейкой) и косвенные измерения, основанные на зависимости между искомой величиной и непосредственно измеряемыми величинами.
Характеристикой точности измерения является его погрешность.

В тех случаях, когда невозможно выполнить измерение (не выделена величина как физическая и не определена единица измерений этой величины) практикуется оценивание таких величин по условным шкалам, например, шкала Рихтера интенсивности землетрясений, шкала Мооса твердости минералов. Наука, предметом изучения которой являются аспекты измерений, называется метрологией.

Определение расстояния.
А если вы о пространствах, то Вам статья на Википедии «Гиперкуб» и «Евклидово пространство» в помощь

Ответ. Измерить- это значит СРАВНИТЬ данное значение ФИЗИЧЕСКОЙ величины с ЭТАЛОНОМ (метром, килограммом, секундой, ампером,).

Измерение — совокупность операций для определения отношения одной (измеряемой) величины к другой однородной величине, принятой за единицу, хранящуюся в техническом средстве (средстве измерений).

ИЗМЕРЕНИЕ — нахождение физических величин при помощи приборов и измерительных инструментов (манометр, тахометр, термометр.: линейка, карандаш, угольник, транспортир, штангельциркуль и др.)

ЭТО ИНТЕРЕСНО:  Как обжать витую пару 8 жил

я не с вашей планеты я из другого измерения

Источник: https://dom-voprosov.ru/prochee/chto-takoe-sredstva-izmereniya

Метод измерения — это что такое? Виды и средства измерений :

Измерение – нахождение значения какой-либо физической величины. Осуществляется этот процесс опытным путем. При этом могут использоваться различные методы и средства измерений. Рассмотрим в статье, какие из них применяются на практике.

Измерение, методы измерений: определения

Результатом процесса является нахождение значения параметра Q. Оно устанавливается, исходя из числового показателя величины (q) и ее единицы (U). Общая формула выглядит так:

Q=qU.

Принципом измерения называют явление либо комплекс феноменов, которые используются в качестве основы процесса. К примеру, масса тела устанавливается с помощью взвешивания с применением силы тяжести, которая пропорциональная весу, а температура – с помощью термоэлектрического эффекта.

Методы и средства измерений выбираются в зависимости от характеристик объекта, цели процедуры. Немаловажное значение имеют и возможности исследователя. Метод измерения – комплекс специальных приемов, через которые реализуются принципы процесса. Их группировка производится по различным признакам.

Средства измерения имеют метрологические нормированные свойства.

Классификация

Виды и методы измерений различаются, исходя из специфики зависимости исследуемого параметра от времени, типа формулы, условий, влияющих на точность. Существует также классификация по способам выражения результатов процесса. По характеру зависимости искомого параметра от времени выделяют динамическое и статистическое измерения. Последнее предполагается неизменяемость показателя.

К таким измерениям относят определение размеров предмета, температуры, постоянного давления и так далее. Динамическими называют процессы нахождения значений, при которых искомый параметр изменяется во времени. К ним относят, например, установление показателя давления при сжатии газа. В зависимости от способа получения результатов различают совместные, косвенные, совокупные, прямые исследования.

Рассмотрим их кратко.

Прямые исследования

В ходе таких измерений искомое значение находят из опытных данных. Выразить это можно уравнением

Q=X, в котором:

  • Q – искомый параметр;
  • Х – показатель, полученный из опытных данных.

Такие измерения выполняются рулеткой либо линейкой, штангенциркулем, микрометром, угломером, термометром и так далее.

Косвенные исследования

В ходе них искомое значение устанавливается по известной зависимости между ним и параметрами, находимыми при прямых измерениях. Уравнение при этом выглядит так:

Q = F(x1, x2 xN), в котором:

  • Q- искомый показатель;
  • F – зависимость;
  • x1, x2, , xN – параметры, полученные прямым измерением.

Таким способом, например, устанавливается объем объекта при заданных геометрических размерах. Методы измерения сопротивления проводников также предполагают применение этого уравнения. Косвенные исследования используются чаще всего тогда, когда прямым способом найти параметр затруднительно или невозможно. На практике возникают ситуации, когда этот прием является единственным. Так, например, находятся размеры внутриатомного или астрономического порядка.

Совокупные исследования

В ходе них используются методы измерения величин, предполагающие повторное нахождение одного или нескольких одноименных параметров при разных их сочетаниях или их мерах. Искомый показатель устанавливается при решении системы уравнений. Они, в свою очередь, составляются по параметрам, полученным при нескольких прямых измерениях.

Рассмотрим пример. Необходимо определить массу отдельных гирь в наборе. То есть, нужно провести калибровку по известному весу одной из них, полученному при прямых измерениях, и сравнить показатели при разных сочетаниях объектов. В наборе присутствуют гири, масса которых 1, 2, 2*, 5, 10, 20 кг.

Все они, за исключением третьей, представляют собой образцы разного веса. Гиря со звездочкой имеет параметры, отличающиеся от точного показателя 2 кг. Калибровка заключается в установлении массы каждого предмета по одному образцу, к примеру, по объекту, весом в 1 кг. Нахождение параметра осуществляется в процессе изменения комбинации гирь.

Необходимо составить уравнения, в которых цифрами обозначаются массы отдельных объектов. К примеру, 1 образец соответствует весу в 1 кг. В таком случае 1=1об + а; 1+ 1 об = 2 + b; 2* = 2 + с и так далее. Дополнительные массы, которые нужно прибавлять к весу гири, стоящему в правой части или отнимать от нее для уравновешивания, обозначаются а, b, с.

При решении системы уравнений можно установить значение массы для каждой гири.

Совместные исследования

Они предполагают измерение двух либо нескольких разноименных параметров одновременно. Это позволяет выявить функциональную зависимость между ними. В качестве примера таких исследований выступает установление длины стержня исходя из его температуры.

Классы

Они устанавливаются в зависимости от условий, определяющих точность показателя. Выделяют следующие классы:

  1. Измерения максимально допустимой точности, которая может достигаться при существующем техническом уровне. В данный класс включаются все высокоточные оценки. В первую очередь, к ним относят эталонные измерения. Они связаны с максимально вероятной точностью воспроизведения заданных единиц физических значений. К этому классу относят также оценку констант, универсальных, в первую очередь. Примером может выступать нахождение абсолютного показателя ускорения при свободном падении.
  2. Контрольно-проверочные измерения. Их погрешность с установленной вероятностью не должна быть выше заданного показателя. В данный класс включаются все измерения, которые производятся в лабораториях государственного надзора за выполнением требований техрегламентов, контроля измерительной техники. Такие оценки состояния объектов гарантируют погрешность с некоторой вероятностью, которая не превышает заданного заранее значения.
  3. Технические измерения, погрешность в которых устанавливается по характеристикам используемых средств. В качестве примера может служить оценка состояния объектов, осуществляемая в производственных условиях на промышленном предприятии, в сфере обслуживания и пр.

Способ отражения результата

По этому признаку различают относительные и абсолютные измерения. Последними называют те, которые базируются на прямых исследованиях одного или нескольких показателей, либо на применении значений констант. К таким исследованиям относят нахождение длины в метрах, показателя силы тока в амперах, ускорения в м/сек.

Относительными считаются измерения, в рамках которых искомый показатель сравнивается с одноименным параметром, выступающим в качестве единицы, или принятым за исходный.

Так, например, находят диаметр обечайки по количеству оборотов ролика, показатель влажности, которая устанавливается по соотношению объема пара в 1 м3 воздуха к количеству паров, насыщающих его при заданной температуре.

Какие методы измерения чаще всего используют на практике?

Стоит отметить, что в исследованиях применяется два приема. Основные методы измерений – непосредственная оценка и сравнение с мерой. В первом случае искомый параметр находится непосредственно по отсчетной шкале прибора прямого действия – по линейке, манометру, термометру и пр.

Второй метод измерения предполагает сравнение искомого показателя с параметром, воспроизводимым мерой. К примеру, чтобы установить диаметр калибра, оптиметр фиксируется на нулевой отметке по блоку концевых значений длины. Результат получают по показателям стрелки, отклоняющейся от 0.

Искомый параметр сравнивается с концевыми значениями.

Подтипы

Метод измерения путем сравнения может реализовываться разными способами:

  1. Противопоставлением. В этом случае искомый показатель и параметр, который воспроизводится мерой, действуют на прибор сравнения одновременно. В результате устанавливается соотношение между значениями.
  2. Дифференциацией. В этом случае искомый показатель сравнивается с известным значением, воспроизводимым мерой. Такой метод измерения применяется при установлении отклонения контролируемого диаметра заготовки на оптиметре после настройки его на 0.
  3. Совпадением. В этом случае между искомым показателем и значением, воспроизводимым мерой, устанавливается разность. Она определяется по совпадению отметок периодических сигналов или шкал.

Существуют и другие приемы. Например, нулевой метод измерения. Он предполагает доведения до 0 результирующего эффекта влияния параметров на прибор сравнения. Такой прием используется при измерении сопротивления по мостовой схеме с полным уравновешиванием. По способу получения информации исследования могут быть бесконтактными или контактными.

Дополнительно

В зависимости от используемых средств, различают органолептический, эвристический, экспертный, инструментальный методы измерения. Последний основывается на использовании технических устройств. Они могут быть механическими, автоматическими, автоматизированными.

Например, часто используются инструментальные методы измерения уровня давления. Экспертное исследование основывается на мнении группы специалистов. Эвристический метод базируется на интуиции. Органолептические исследования предполагают использование органов чувств.

Изучение состояния объекта проводится также комплексными и поэлементными методами. Последний предполагает изучение каждого параметра предмета в отдельности. К примеру, могут оцениваться овальность, огранка цилиндрического вала и пр.

Комплексный метод предполагает измерение суммарного показателя, на который влияют отдельные свойства объекта. К примеру, может выполняться исследование радиального биения, находящегося в зависимости от эксцентриситета, овальности и так далее.

Международная система

Она была принята в 1960 г. на XI Генеральной конференции. Система предусматривает перечень семи ключевых единиц измерения. К ним относятся метр, секунда, ампер, моль, килограмм, кельвин, кандела.

В системе также предусмотрены две дополнительные единицы — стерадиан, радиан, а также приводятся приставки для образования дольных и кратных параметров. В СИ определены и производные значения. Они образуются при помощи простейших уравнений физических параметров, числовые коэффициенты которых равны 1.

Эти значения применяются, например, при определении равномерности в линейной скорости при прямолинейном движении. Допустим, длина пути, который был пройден, v = l/t (м), время, потраченное на это, — t (с). Скорость получится в метрах в секунду. На практике принято использовать сокращение – м/с.

Эта единица, таким образом, выражает скорость равномерно и прямолинейно перемещающейся точки, при которой она за секунду продвигается на метр. Аналогично образуются и остальные показатели, в том числе те, коэффициент в которых — не единица.

Источник: https://www.syl.ru/article/293656/metod-izmereniya---eto-chto-takoe-vidyi-i-sredstva-izmereniy

Понравилась статья? Поделиться с друзьями:
ЭлектроМастер
Как подключить электродвигатель с 380 на 220

Закрыть