Что такое проводник в физике

Проводник (электрический проводник)

что такое проводник в физике

Проводник – это вещество или материал, которое отлично проводит электрический ток.

Как вы все знаете, любое вещество состоит из атомов. Атомы в свою очередь состоят из электронов и ядер

Давайте для понимания рассмотрим вот такую картинку. Предположим, что пастух – это ядро, а овцы вокруг него – это электроны.

Те овцы, которые находятся рядом с пастухом, не могут от него просто так взять и убежать, так как он присматривает за ними. Иначе останется без мяса и шерсти к осени. Но вот те овцы, которые находятся поодаль от пастуха, имеют все шансы от него убежать.

То же самое можно сказать и про атомы и электроны. Электроны, которые находятся на самой дальней орбите от ядра менее зависимы, чем те, которые расположены ближе к ядру.

В результате, такие электроны могут “оторваться” от ядра и начать самостоятельное путешествие по веществу. Такие электроны называются свободными электронами.

Удельное сопротивление

И вот мы плавно переходим к другому вопросу, что такое сопротивление проводника? Как я уже говорил выше, чем больше свободных электронов в веществе, тем лучше такое вещество проводит электрический ток. Следовательно, сопротивление проводника зависит от того, сколько свободных электронов содержит такой проводник. Поэтому, в физике есть такое понятие, как удельное сопротивление вещества.

Еще раз. Если в каком-либо веществе полно свободных электронов, то такое вещество будет хорошо проводить электрический ток. Если электронов еще меньше, то такое вещество будет плохо проводить электрический ток. А если свободных электронов почти нет, то такое вещество совсем не будет проводить ток. Поэтому, удельное сопротивление вещества показывает способность этого вещества препятствовать электрическому току, проходящему через него.

Удельное сопротивление выражается в единицах Ом × м.

Формула удельного сопротивления проводника

где

ρ – это удельное сопротивление, Ом × м

R – сопротивление проводника, Ом

Источник: https://www.RusElectronic.com/provodnik/

SA. Проводники и диэлектрики

что такое проводник в физике

  • Проводниками называются вещества, по которым могут свободно перемещаться электрические заряды. Термин «проводник» является переводом с английского слова сonductor, который ввел Ж.Т.Дезагюлье в 1739 г. для обозначения «тел, действующих как каналы для транспорта электрической силы».

Проводниками являются металлы, электролиты (растворы, проводящие ток) плазма.

В металлах носителями зарядов являются свободные электроны, в электролитах – положительные и отрицательные ионы, в плазме – свободные электроны и ионы.

У большинства металлов практически каждый атом теряет электрон и становится положительным ионом. Например, у меди в 1 м3 свободных электронов 1029. Свободные электроны в металлах находятся в непрерывном беспорядочном движении. Скорость такого движения примерно равна 105 м/с (100 км/с).

Не смотря на наличие внутри тела зарядов (свободных электронов и ионов), электрического поля внутри проводника нет. Отдельные заряженные частицы создают микроскопические поля. Но эти поля внутри проводника в среднем компенсируют друг друга (рис. 1).

  • Если бы это условие не выполнялось, то свободные заряды, под действием кулоновских сил, пришли бы в движение. Они двигались бы до тех пор, пока действующая на них сила не обратилась бы в нуль.

Поместим незаряженный проводник, например, металл, в однородное электростатическое поле с напряженностью \(~\vec E_0\). На свободные электроны начинают действовать электрические силы \(\vec F\), под действием которых электроны приходят в движение (рис. 2). Продолжая беспорядочное движение, электроны начинают смещаться в сторону действия силы (скорость смещения порядка 0,1 мм/с).

На одной поверхности проводника образуется область с недостатком электронов, на противоположной – с избытком электронов. Это приводит к появлению еще одного электрического поля с напряженностью \( \vec E_{np}\) (рис. 3).

Общая напряженность \( \vec E\) электрического будет равна

\( \vec E = \vec E_0 + \vec E_{np}, \;\; E = E_0 — E_{np}.\)

Электрическая сила \(F\), действующая на свободные электроны с зарядом q:

\(F = q \cdot E.\)

По мере смещения электронов, заряд на поверхности увеличивается. Это приводит к увеличению напряженности \(E_{np}\) и уменьшению общей напряженности \(E\) (т.к. \(E = E_0 — E_{np}\)). И в какой-то момент напряженность \(E_{np}\) становится равной напряженности внешнего поля \(E_0\), т.е. \(E_{np} = E_0\), и общая напряженность поля внутри проводника становится равной нулю.

Электрическая сила \(F\) в этот момент также становится равной нулю, электроны перестают смещаться, но беспорядочное движение не прекращается. На поверхности проводника остаются электрические заряды.

Явление возникновения электрических зарядов на поверхности проводника под воздействием электрического поля называется электростатической индукцией, а возникшие заряды – индуцированными.

  • Доля электронов, которые оказались на поверхности, очень мала. Например, если к медной пластинке толщиной в 1 см приложить напряжение в 1000 В, то эта доля составляет 10–10 % от всех свободных электронов.

Каким бы способом ни был заряжен проводник, внутри него поле отсутствует. Это позволяет использовать заземленные полые проводники со сплошными или сетчатыми стенками для электростатической защиты от внешних электростатических полей. Так, например, для защиты военных складов, служащих для хранения взрывчатых веществ, от удара молнии их окружают заземленной проволочной сетью.

  • Впервые явление электростатической защиты было обнаружено М.Фарадеем в 1836 году. Он провел интересный опыт. Большая деревянная клетка была оклеена тонкими листами олова, изолирована от земли и сильно заряжена. В клетке находился сам Фарадей с очень чувствительным электроскопом. Несмотря на то, что при приближении к клетке тел, соединенных с землей, проскакивали искры, внутри клетки электрическое поле не обнаруживалось.

Диэлектрики в электростатическом поле

  • Диэлектрики (изоляторы) — это вещества, в которых практически отсутствуют свободные носители зарядов. Термин «диэлектрик» происходит от греческого слова dia — через, сквозь и английского слова electric — электрический. Этот термин ввел М. Фарадей в 1838 г. для обозначения веществ, в которые проникает электрическое поле.

Резкой границы между проводниками и диэлектриками нет, так как все вещества в той или иной степени способны проводить электрический ток.

Но если в веществе свободных зарядов в 1015-1020 раз меньше, чем в металлах, то в таких случаях слабой проводимостью вещества можно пренебречь и считать его идеальным диэлектриком.

Почти все заряженные частицы внутри диэлектрика связаны между собой и не способны передвигаться по объему тела. Они могут только незначительно смещаться относительно своих равновесных положений.

Диэлектриками являются все неионизированные газы, многие чистые жидкости (дистиллированная вода, масла, бензины) и твердые тела (пластмассы, стекла, керамика, кристаллы солей, сухая древесина).

Существуют полярные и неполярные диэлектрики.

Неполярный диэлектрик

Рассмотрим схему простейшего атома – атома водорода (рис. 4).

Положительный заряд атома, заряд его ядра, сосредоточен в центре атома. Вокруг ядра движется электрон со скоростью порядка 106 м/с и уже за 10–9 с успевает совершить миллион оборотов. Поэтому орбиту электрона можно рассматривать как электронное облако, расположенное симметрично относительно ядра. Следовательно, даже за очень малый промежуток времени центр распределения отрицательного заряда приходится на середину атома, т.е. совпадает с положительно заряженным ядром.

  • Диэлектрики, состоящие из атомов и молекул, у которых центры распределения положительных и отрицательных зарядов совпадают, называются неполярными.

Примерами таких веществ являются одноатомные благородные (инертные) газы; газы, состоящие из симметричных двухатомных молекул (кислород, водород, азот); различные органические жидкости (масла, бензины); некоторые твердые тела (пластмассы).

Поместим такой диэлектрик в однородное электростатическое поле с напряженностью \(\vec E_0\) .

На отрицательно и положительно заряженные частицы начинают действовать силы, направленные в противоположные стороны (рис. 5).

В результате молекула растягивается и происходит незначительное смещение центров положительного и отрицательного зарядов.

Образуется система двух точечных зарядов q, равных по модулю и противоположных по знаку, находящихся на некотором расстоянии l друг от друга (рис. 6). Такую нейтральную в целом систему зарядов называют электрическим диполем.

Электрический диполь создает электрическое поле напряженностью Едi, которая направлена против напряженности внешнего поля Е0.

В диэлектрике, состоящем из множества таких диполей, с напряженность Едi, общая напряженность Е становится меньше напряженности внешнего поля Е0 (рис. 7).

Вследствие смещения зарядов на одной поверхности диэлектрика появляются преимущественно отрицательные заряды диполей, а на другой – положительные (рис. 8). Внутри любого объема диэлектрика суммарный электрический заряд молекул в этом объеме равен нулю.

  • Заряды, которые образуются на поверхности диэлектрика, помещенного в электрическое поле, называются связанными.
  • Смещение связанных положительных и отрицательных зарядов диэлектрика в противоположные стороны под действием приложенного внешнего электростатического поля называют поляризацией.
  • Поляризация диэлектрика, в результате которой происходит смещение электронных оболочек, называется электронной поляризацией.

Электронная поляризация происходит в атомах любого диэлектрика, помещенного в электрическое поле.

Полярный диэлектрик

Многие диэлектрики (H2O, H2S, NO2) образованы из молекул, каждая из которых является электрическим диполем и в отсутствии внешнего электрического поля. Такие молекулы и образованные ими диэлектрики называются полярными.

Например, молекула поваренной соли NaCl. При образовании молекулы единственный валентный электрон натрия захватывается хлором. Оба нейтральных атома превращаются в систему из двух ионов с зарядами противоположных знаков. Центр положительного заряда молекулы приходится на ион натрия (Na), а отрицательного – на ион хлора (Cl) (рис. 9).

При отсутствии внешнего поля молекулярные диполи из-за теплового движения расположены хаотично, поэтому их суммарный дипольный момент равен нулю.

Поместим полярный диэлектрик в однородное электростатическое поле с напряженностью \(\vec E_0\) . Со стороны этого поля на диполь будут действовать две силы, одинаковые по модулю и противоположные по направлению. Эти силы создают вращающий момент, стремящийся повернуть диполь так, чтобы его ось была направлена по линии напряженности поля (рис. 10). Но этому препятствует тепловое движение. В результате молекула поворачивается лишь частично (рис. 11).

  • Рис. 10
  • Рис. 11

Поворот электрических диполей приводит к появлению еще одного электрического поля с напряженностью Едi, которая направлена против напряженности внешнего поля Е0. В таком диэлектрике общая напряженность Е становится меньше напряженности внешнего поля Е0.

Вследствие поворота молекул на одной поверхности диэлектрика появляются преимущественно отрицательные заряды диполей, а на другой – положительные (см. рис. 11). Такие заряды называются связанные.

Внутри диэлектрика отрицательные и положительные заряды диполей компенсируют друг друга и средний электрический заряд диэлектрика равен нулю.

  • Такой механизм поляризации называется ориентационным.
  • Полная ориентация диполей (состояние насыщения) может быть достигнута лишь в сильных полях при температурах, близких к абсолютному нулю.
  • Для насыщение при комнатных температурах необходимы поля напряженностью 1010 – 1012 В/м. Но чаще всего, даже при значительно меньших напряженностях, наступает пробой диэлектрика.

У полярных диэлектриков, наряду с ориентационной поляризацией, наблюдается и электронная поляризация. Однако эффект ориентации диполей на несколько порядков превосходит эффект смещения зарядов, поэтому последним часто пренебрегают.

Диэлектрическая проницаемость

Таким образом, во всех диэлектриках, помещенных в электростатическое поле, происходит уменьшение напряженности этого поля. Степень ослабления поля зависит от свойств диэлектрика. Для характеристики электрических свойств диэлектриков вводится особая величина, называемая диэлектрической проницаемостью.

  • Диэлектрическая проницаемость ε — это физическая величина, равная отношению модуля напряженности электрического поля E0 в вакууме к модулю напряженности электростатического поля Ε внутри однородного диэлектрика

Источник: http://www.physbook.ru/index.php/SA._%D0%9F%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%B8%D0%BA%D0%B8_%D0%B8_%D0%B4%D0%B8%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D0%BA%D0%B8

Электрическое поле. Проводники и диэлектрики | УчительPRO

что такое проводник в физике

Электрическое взаимодействие отличается от взаимодействия тел, изучаемого механикой, прежде всего тем, что заряженные тела взаимодействуют, находясь на некотором расстоянии друг от друга.

Это взаимодействие наблюдается как в вещественной среде, так и в безвоздушном пространстве. Согласно утверждению английских учёных М. Фарадея и Д. Максвелла, в пространстве, в котором находится заряженное тело, существует электрическое поле.

Посредством этого поля одно заряженное тело действует на другое.

Электрическое поле материально, наряду с веществом оно представляет собой вид материи. Это означает, что электрическое поле реально, оно существует независимо от нас. Убедиться в реальности электрического поля заряженного тела можно, наблюдая его действие на другие тела.

Электрическая сила

Силу, с которой поле действует на внесённый в него электрический заряд, называют электрической силой. Предположим, что в электрическое поле, существующее вокруг некоторого заряженного тела, вносят электрический заряд. Значение силы, с которой это поле действует на заряд, зависит от расстояния между зарядами и от значения этих зарядов.

Одним из способов электризации тел является электризация через влияние. Предположим, что к шару электрометра поднесли, не касаясь его, отрицательно заряженную палочку.

Электрическое поле этой палочки будет действовать на заряды, содержащиеся в электрометре. При этом свободные электроны будут отталкиваться и соберутся на конце стержня и на стрелке, отклонение стрелки покажет наличие заряда.

На шаре электрометра при этом будет избыточный положительный заряд. Если палочку убрать, то стрелка электрометра вернётся в ноль.

Для того чтобы на электрометре остался заряд, его нужно заземлить, т.е. соединить с Землёй. Это можно сделать, если коснуться шара электрометра рукой. Тогда электроны, стремясь уйти как можно дальше, переместятся с электрометра в землю.

Если теперь убрать руку и палочку, то стрелка покажет, что электрометр заряжен. На нём останется избыточный положительный заряд. Аналогично электрометр может приобрести отрицательный заряд, если поднести к нему положительно заряженную палочку.

В этом случае при заземлении на электрометре будет избыток электронов.

Проводники и диэлектрики

В рассмотренном выше опыте электрические заряды перемещались по электрометру. По эбонитовой палочке они не перемещались, в противном случае при касании её рукой она бы разряжалась. Из этого следует, что существуют вещества, по которым заряды могут перемещаться, и вещества, по которым заряды не могут перемещаться.

Первый класс веществ называют проводниками. Хорошими проводниками являются металлы.

Это связано с тем, что в металлах существуют электроны, слабо связанные с ядром атома и имеющие возможность свободно перемещаться.

Если поместить проводник в электрическое поле так, как это было в рассмотренном опыте с электрометром, то произойдёт разделение зарядов. Электрическое поле в проводниках создаётся и поддерживается источником тока.

Второй класс веществ называют диэлектриками. К ним относятся эбонит, стекло, пластмассы и пр. В диэлектрике нет свободных зарядов. Если внести диэлектрик в электрическое поле, то нейтральный атом в нём примет определённую ориентацию, однако никакого перемещения зарядов не произойдет.

Схема «Проводники и диэлектрики»

Конспект урока «Электрическое поле. Проводники и диэлектрики».

Следующая тема: «Постоянный электрический ток».

Источник: https://uchitel.pro/%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5-%D0%BF%D0%BE%D0%BB%D0%B5/

Что такое проводники, полупроводники и диэлектрики

В электричестве выделяют три основных группы материалов – это проводники, полупроводники и диэлектрики. Основным их отличием является возможность проводить ток. В этой статье мы рассмотрим, чем отличаются эти виды материалов и как они ведут себя в электрическом поле.

Что такое проводник

Вещество, в котором присутствуют свободные носители зарядов, называют проводником. Движение свободных носителей называют тепловым. Основной характеристикой проводника является его сопротивление (R) или проводимость (G) – величина обратная сопротивлению.

ЭТО ИНТЕРЕСНО:  Клетка фарадея что это

G=1/R

Говоря простыми словами – проводник проводит ток.

К таким веществам можно отнести металлы, но если говорить о неметаллах то, например, углерод – отличный проводник, нашел применение в скользящих контактах, например, щетки электродвигателя. Влажная почва, растворы солей и кислот в воде, тело человека – тоже проводит ток, но их электропроводность зачастую меньше, чем у меди или алюминия, например.

Металлы являются отличными проводниками, как раз таки благодаря большому числу свободных носителей зарядов в их структуре. Под воздействием электрического поля заряды начинают перемещаться, а также перераспределяться, наблюдается явление электростатической индукции.

Что такое диэлектрик

Диэлектриками называют вещества, которые не проводят ток, или проводят, но очень плохо. В них нет свободных носителей зарядов, потому что связь частиц атома достаточно сильная, для образования свободных носителей, поэтому под воздействием электрического поля тока в диэлектрике не возникает.

Газ, стекло, керамика, фарфор, некоторые смолы, текстолит, карболит, дистиллированная вода, сухая древесина, резина – являются диэлектриками и не проводят электрический ток. В быту диэлектрики встречаются повсеместно, например, из них делаются корпуса электроприборов, электрические выключатели, корпуса вилок, розеток и прочее. В линиях электропередач изоляторы выполняются из диэлектриков.

Однако, при наличии определенных факторов, например повышенный уровень влажности, напряженность электрического поля выше допустимого значения и прочее – приводят к тому, что материал начинает терять свои диэлектрические функции и становится проводником. Иногда вы можете слышать фразы типа «пробой изолятора» — это и есть описанное выше явление.

Если сказать кратко, то основными свойствами диэлектрика в сфере электричества являются электроизоляционные. Именно способность препятствовать протеканию тока защищает человека от электротравматизма и прочих неприятностей. Основной характеристикой диэлектрика является электрическая прочность – величина равная напряжению его пробоя.

Что такое полупроводник

Полупроводник проводит электрический ток, но не так как металлы, а при соблюдении определенных условий – сообщении веществу энергии в нужных количествах.

Это связано с тем, что свободных носителей (дырок и электронов) зарядов слишком мало или их вовсе нет, но если приложить какое-то количество энергии – они появятся. Энергия может быть различных форм – электрической, тепловой.

Также свободные дырки и электроны в полупроводнике могут возникать под воздействием излучений, например в УФ-спектре.

Где применяются полупроводники? Из них изготавливают транзисторы, тиристоры, диоды, микросхемы, светодиоды и прочее. К таким материалам относят кремний, германий, смеси разных материалов, например арсенид-галия, селен, мышьяк.

Чтобы понять, почему полупроводник проводит электрический ток, но не так как металлы, нужно рассматривать эти материалы с точки зрения зонной теории.

Зонная теория

Зонная теория описывает наличие или отсутствие свободных носителей зарядов, относительно определенных энергетических слоев. Энергетическим уровнем или слоем называют количество энергии электронов (ядер атомов, молекул – простых частиц), их измеряют в величине Электронвольты (ЭВ).

На изображении ниже показаны три вида материалов с их энергетическими уровнями:

Обратите внимание, что у проводника энергетические уровни от валентной зоны до зоны проводимости объединены в неразрывную диаграмму. Зона проводимости и валентная зоны накладываются друг на друга, это называется зоной перекрытия. В зависимости от наличия электрического поля (напряжения), температуры и прочих факторов количество электронов может изменяться. Благодаря вышеописанному, электроны могут передвигаться в проводниках, даже если сообщить им какое-то минимальное количество энергии.

У полупроводника между зоной валентности и зоной проводимости присутствует определенная запрещенная. Ширина запрещенной зоны описывает, какое количество энергии нужно сообщить полупроводнику, чтобы начал протекать ток.

У диэлектрика диаграмма похожа на ту, которая описывает полупроводники, однако отличие лишь в ширине запрещенной зоны – она здесь во много раз большая. Различия обусловлены внутренним строением и вещества.

Мы рассмотрели основные три типа материалов и привели их примеры и особенности. Главным их отличием является способность проводить ток.

Поэтому каждый из них нашел свою сферу применения: проводники используются для передачи электроэнергии, диэлектрики – для изоляции токоведущих частей, полупроводники – для электроники.

Надеемся, предоставленная информация помогла вам понять, что собой представляют проводники, полупроводники и диэлектрики в электрическом поле, а также в чем их отличие между собой.

Напоследок рекомендуем просмотреть полезное видео по теме:

Наверняка вы не знаете:

Источник: https://samelectrik.ru/chto-takoe-provodniki-poluprovodniki-i-dielektriki.html

Электрический ток

Электрический ток — направленное движение заряженных частиц в электрическом поле. Заряженными частицами могут являться электроны или ионы (заряженные атомы). Атом, потерявший один или несколько электронов, приобретает положительный заряд. — Анион (положительный ион).Атом, присоединивший один или несколько электронов, приобретает отрицательный заряд. — Катион (отрицательный ион).

Ионы в качестве подвижных заряженных частиц рассматриваются в жидкостях и газах. В металлах носителями заряда являются свободные электроны, как отрицательно заряженные частицы.

В полупроводниках рассматривают движение (перемещение) отрицательно заряженных электронов от одного атома к другому и, как результат, перемещение между атомами образовавшихся положительно заряженных вакантных мест — дырок.

За направление электрического тока условно принято направление движения положительных зарядов. Это правило было установлено задолго до изучения электрона и сохраняется до сих пор. Так же и напряжённость электрического поля определена для положительного пробного заряда.

На любой единичный заряд q в электрическом поле напряженностью E действует сила F = qE, которая перемещает заряд в направлении вектора этой силы.

На рисунке показано, что вектор силы F— = -qE, действующей на отрицательный заряд -q, направлен в сторону противоположную вектору напряжённости поля, как произведение вектора E на отрицательную величину. Следовательно, отрицательно заряженные электроны, которые являются носителями зарядов в металлических проводниках, в реальности имеют направление движения, противоположное вектору напряжённости поля и общепринятому направлению электрического тока.

Количество заряда Q = 1 Кулон, перемещённое через поперечное сечение проводника за время t = 1 секунда, определится величиной тока I = 1 Ампер из соотношения:

I = Q/t.

Отношение величины тока I = 1 Aмпер в проводнике к площади его поперечного сечения S = 1 m 2 определит плотность тока j = 1 A/m2:

j = I/S

Работа A = 1 Джоуль, затраченная на транспортировку заряда Q = 1 Кулон из точки 1 в точку 2 определит значение электрического напряжения U = 1 Вольт, как разность потенциалов φ1 и φ2 между этими точками из расчёта:

U = A/Q = φ1 — φ2

Электрический ток может быть постоянным или переменным.

Постоянный ток — электрический ток, направление и величина которого не меняются во времени.

Переменный ток — электрический ток, величина и направление которого меняются с течением времени.

Ещё в 1826 году немецкий физик Георг Ом открыл важный закон электричества, определяющий количественную зависимость между электрическим током и свойствами проводника, характеризующими их способность противостоять электрическому току.

Эти свойства впоследствии стали называть электрическим сопротивлением, обозначать буквой R и измерять в Омах в честь первооткрывателя.

Закон Ома в современной интерпретации классическим соотношением U/R определяет величину электрического тока в проводнике исходя из напряжения U на концах этого проводника и его сопротивления R:

I = U/R

Электрический ток в проводниках

В проводниках имеются свободные носители зарядов, которые под действием силы электрического поля приходят в движение и создают электрический ток. В металлических проводниках носителями зарядов являются свободные электроны.

С повышением температуры хаотичное тепловое движение атомов препятствует направленному движению электронов и сопротивление проводника увеличивается.

При охлаждении и стремлении температуры к абсолютному нулю, когда прекращается тепловое движение, сопротивление металла стремится к нулю.

Электрический ток в жидкостях (электролитах) существует как направленное движение заряженных атомов (ионов), которые образуются в процессе электролитической диссоциации.Ионы перемещаются в сторону электродов, противоположных им по знаку и нейтрализуются, оседая на них. — Электролиз. Анионы — положительные ионы.

Перемещаются к отрицательному электроду — катоду. Катионы — отрицательные ионы. Перемещаются к положительному электроду — аноду. Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.

При нагревании сопротивление электролита уменьшается из-за увеличения числа молекул, разложившихся на ионы.

Электрический ток в газах — плазма. Электрический заряд переносится положительными или отрицательными ионами и свободными электронами, которые образуются под действием излучения.

Существует электрический ток в вакууме, как поток электронов от катода к аноду. Используется в электронно-лучевых приборах — лампах.

Электрический ток в полупроводниках

Полупроводники занимают промежуточное положение между проводниками и диэлектриками по своему удельному сопротивлению. Знаковым отличием полупроводников от металлов можно считать зависимость их удельного сопротивления от температуры. С понижением температуры сопротивление металлов уменьшается, а у полупроводников, наоборот, возрастает.

При стремлении температуры к абсолютному нулю металлы стремятся стать сверхпроводниками, а полупроводники — изоляторами.Дело в том, что при абсолютном нуле электроны в полупроводниках будут заняты созданием ковалентной связи между атомами кристаллической решётки и, в идеале, свободные электроны будут отсутствовать.

При повышении температуры, часть валентных электронов может получать энергию, достаточную для разрыва ковалентных связей и в кристалле появятся свободные электроны, а в местах разрыва образуются вакансии, которые получили название дырок. Вакантное место может быть занято валентным электроном из соседней пары и дырка переместится на новое место в кристалле.

При встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами полупроводника и происходит обратный процесс – рекомбинация. Электронно-дырочные пары могут появляться и рекомбинировать при освещении полупроводника за счет энергии электромагнитного излучения.В отсутствие электрического поля электроны и дырки участвуют в хаотическом тепловом движении.

В электрическое поле в упорядоченном движении участвуют не только образовавшиеся свободные электроны, но и дырки, которые рассматриваются как положительно заряженные частицы. Ток I в полупроводнике складывается из электронного In и дырочного Ip токов.

К числу полупроводников относятся такие химические элементы, как германий, кремний, селен, теллур, мышьяк и др.Самым распространенным в природе полупроводником является кремний.

Замечания и предложения принимаются и приветствуются!

Источник: https://tel-spb.ru/current/

Значение слова «проводник» в 6 словарях

Все словари Словарь Ушакова Контрразведывательный словарь Толковый сельскохозяйственный словарь Тезаурус русской деловой лексики Словарь Ожегова Словарь Ефремовой

проводник

проводник, проводника, муж.

1. Провожаый для указания пути в незнакомой местности. Поездка верхом в горы без проводника опасна.

2. Железнодорожный служащий, наблюдающий за порядком в вагоне во время пути.

3. Почтовый ямщик, кучер при лошадях (ист.).

4. Деревянный брус, стальной канат или рельс в вертикальном стволе шахты, направляющие движение клети (горн.).

5. *****

теплоту, электричество, звук и т.п. (физ.). Металлы — лучшие проводники тепла.

| Тело, пропускающее, проводящее ток (тех.). Металл — хороший проводник электричества.

6.перен. То, что служит передатчиком, посредником для распространения чего-нибудь. Проводники культуры. Большевистская печать — проводник влияния партии в массы. «Меньшевики скатились в болото соглашательства, став проводниками буржуазного влияния на рабочий класс, став на деле агентами буржуазии в рабочем классе.»История вкп(б) (о периоде русско-японской войны и первой русской революции).

проводник

  1) лицо, осуществляющее скрытую переправу через государственную границу агентов, эмиссаров, изменников Родины, контрабандистов и др.

  Проводник, как правило, житель приграничного района, хорошо знающий местные условия, систему охраны границы, имеющий опыт нелегального перехода границы.

  Переправу указанной категории лиц через границу проводник осуществляет либо по заданию органов разведки или контрразведки противника либо по собственной инициативе, из корыстных побуждений.

  2) у украинских буржуазных националистов проводник лицо, стоящее во главе «провода», то есть руководства всей организации, ее отдела (филиала) или другого, более мелкого структурного звена.

проводник

прирост, растущий из верхушечной почки дерева или ветки. Обладает самым активным ростом, определяет основное направление роста дерева или ветки

проводник

проводник

ПРОВОДНИК 1, а, м.

1. Провожатый, указывающий путь. П. по горным тропам.

2. Железнодорожный служащий, сопровождающий вагон. Бригада проводников.

3. Специалист, работающий со служебной собакой. П. с розыскной собакой.

| ж. проводница, ы (к 1 и 2 знач.).

ПРОВОДНИК 2, а, м.

1. Вещество, не оказывающее значительного сопротивления электрическому току или хорошо пропускающее через себя звук, теплоту. Металл п. электричества.

2. перен., чего. Передатчик, посредник в распространении чегон. Книга п. знаний.

| прил. проводниковый, ая, ое (к 1 знач.).

проводник

  1. м.
    1. Тот, кто сопровождает кого-л. для указания пути, охраны, наблюдения и т.п.
    2. Железнодорожный служащий, сопровождающий пассажирский вагон в пути и обслуживающий пассажиров.
    3. перен. Тот, кто проводит, распространяет что-л.
  2. м. Вещество, способное пропускать через себя тепло, электричество, звук и т.п.

Добавить свое значение

Цитаты со словом проводник

  • Жизнь налаживается не от прочтения книг, а от внутренней работы. Книги — только стимул, проводник.. Анхель де Куатье, «Поединок со смертью»
  • Как в тёмные времена люди лучше всего ведомы религией, так и в кромешной тьме лучший проводник — слепой. Когда же наступает рассвет, просто глупо следовать за слепым.. Генрих Гейне
  • Жизнь налаживается не от прочтения книг, а от внутренней работы. Книги — только стимул, проводник.. Анхель де Куатье, «Поединок со смертью»
  • арчак
  • бугор
  • вергилий
  • водитель
  • вожак
  • вожатый
  • гид
  • железнодорожник
  • кондуктор
  • лоцман
  • медиум
  • ответвление
  • передатчик
  • поводырь
  • посредник

Все синонимы к слову проводник

Источник: https://znachenie-slova.ru/%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%B8%D0%BA

Проводники и изоляторы

Физика > Проводники и изоляторы

Изучите проводники и изоляторы – умение материала проводить ток. Узнайте, чем отличаются проводники от изоляторов, удельное сопротивление, электрический заряд.

По умению проводить ток, материалы делят на проводники и изоляторы.

Задача обучения

  • Различать проводники и изоляторы среди обычных материалов.

Основные пункты

  • Сопротивление – физическое свойство, измеряющее способность материала переносить ток.
  • Проводники вмещают электрические заряды, которые при влиянии разности потенциалов перемещаются в направлении одного из полюсов. Это электрический ток.
  • Изоляторы – материалы, в которых внутренний заряд лишен свободного передвижения и не может проводить электрический ток.

Термины

  • Удельное сопротивление – сопротивление электрическому току.
  • Изолятор – вещество, не передающее тепло, звук или электричество.
  • Проводник – вмещает подвижные электрические заряды.

Обзор

Все материалы делятся на изоляторы и проводники. Эта классификация основывается на удельном сопротивлении.

Изолятор – материал, где электрические заряды лишены свободного передвижения. А в проводнике этот поток возможен и движется в одном или нескольких направлениях.

Проводники

Все проводники располагают электрическими зарядами, которые при влиянии разности в потенциалах движутся в сторону одного из полюсов. Положительные заряды устремлены к отрицательному концу, а отрицательные к положительному. Этот поток – электрический ток.

Ионные вещества и растворы способны проводить электричество, но максимальную проводимость предоставляют металлы. В проводах часто используют медь, так как она обеспечивает отличную проводимость и дешево стоит. Но для высокой проводимости иногда используют позолоченные провода.

У каждого проводника есть предел мощности (объем тока, который может переносить).

Изоляторы

Это материалы, где внутренний заряд лишен возможности свободного передвижения, а значит, не может проводить электрический ток. Мы не располагаем идеальным изолятором с бесконечным удельным сопротивлением. Зато можно использовать стекло, бумагу и тефлон.

У изоляторов также есть физические пределы. Если на них воздействовать огромным количеством напряжения, то случится электрический пробой (электричество пробивается сквозь материал).

Этот провод представлен сердечником из меди (проводник) и полиэтиленовым покрытием (изолятор). Медь пропускает ток, а полиэтилен гарантирует, что ток не выйдет за пределы кабеля

ЭТО ИНТЕРЕСНО:  Что такое объект автоматизации

Читайте нас на Яндекс.Дзен

Источник: https://v-kosmose.com/fizika/provodniki-i-izolyatoryi/

Лучшие проводники электрического тока: характеристики веществ, пропускающих электричество

При использовании электроприборов человек постоянно сталкивается с веществами, которые являются проводниками, полупроводниками и диэлектриками, не проводящими ток. Эти материалы отличаются степенью электропроводности. Для того чтобы работать с бытовой техникой, необходимо знать все их особенности и характеристику. Выбрать лучший проводник электрического тока можно из металлов.

  • Особенности понятия
  • Первый и второй род
  • Процессы в электропроводниках

Проводниками тока называют те вещества, в которых количество свободных электрических зарядов превышает число связанных. Они могут начинать двигаться под влиянием внешней силы. Состояние материалов может быть газообразным, твёрдым и жидким. Электричество может протекать по металлической проволоке, если её подключить между двумя проводниками с разными потенциалами.

Ток переносят электроны, не связанные между собой атомами. Именно они способны охарактеризовать способность предмета пропускать через себя электрические заряды, или величину проводимости тока. Её значение обратно пропорционально сопротивлению, она измеряется в сименсах: См = 1/Ом.

Основные носители электричества в природе — это ионы, дырки и электроны. Поэтому способность к проводимости делят на три вида:

  • ионную;
  • электронную;
  • дырочную.

Приложенное напряжение даёт возможность оценить качество проводника. Эту способность вещества называют ещё вольт-амперной характеристикой.

Первый и второй род

После того как получилось разобраться с тем, что проводит электрический ток, нужно узнать особенности некоторых веществ. Проводники могут быть разными — металлическая проволока, морская вода. Но в них ток различается, поэтому вещества делят на две группы:

  • первого рода, в которых электричество протекает по электронам;
  • второй вид — на основе ионов.

К первым относят все металлы и углерод. Ко второму роду относят щелочи, кислоты, соляные расплавы — электролиты. В них ток представляет упорядоченное движение отрицательных и положительных ионов. Электричество в таких материалах протекает при любом показателе напряжения. В обычных условиях хороший проводник электрического тока — это изделие из золота, серебра, алюминия или меди.

Их двух последних материалов изготавливают кабели, отличающиеся низкой стоимостью. Качественное жидкое вещество, проводящее ток — ртуть, а также ток хорошо протекает через углерод. Но это вещество не обладает гибкостью, поэтому на практике его не применяют. Хотя физики недавно смогли представить углерод в форме графена, что позволило из его нитей изготавливать шнуры.

У графеновых изделий сопротивление такое, что оно является недопустимым для проводников. Их позволительно использовать только в нагревателях. В этом случае металлические провода из никеля и хрома проигрывают, так как они не могут выдержать очень высокую температуру. Спирали в лампах дневного света изготавливают из вольфрама. Этот материал способен накаливаться, так как вещество является тугоплавким.

Процессы в электропроводниках

Во время протекания электричества проводник попадает под определённое воздействие. Самое главное — это повышение температуры. А также выделяют некоторые химические реакции, которые могут изменить физические свойства вещества. Более всего такому влиянию подвергаются проводники второго рода. В них протекает химическая реакция, которую называют электролизом.

Ионы веществ около электрических полюсов получают необходимый заряд и восстанавливают исходное состояние, которое было у них до образования щелочи, кислоты или соли. С помощью электролиза химики и физики могут получать чистые химические вещества из природного сырья. Таким образом создают алюминий и другие виды металлов.

Вещества первого и второго рода участвуют в других процессах, кроме проводимости электричества. К примеру, во время взаимодействия кислоты со свинцом возникает химическая реакция, которая вызывает выделение тока. По такому принципу работают все аккумуляторы.

Проводники первой группы при контакте друг с другом могут изменяться. Медь и алюминий при эксплуатации нужно покрывать специальной оболочкой, иначе оба металла просто расплавятся. Влажный воздух приведёт к тому, что произойдёт электрохимическая реакция.

Поэтому проводники покрывают слоем лака или другого защитного материала.

Некоторые проводники не могут оказывать электричеству сопротивление при холодном воздухе. Такое явление называют сверхпроводимостью, которая соответствует значению температуры, близкой к химическому состоянию жидкого гелия. Но исследования привели к тому, что есть новые проводники с высокими показателями температуры.

Такие вещества были открыты в 20 веке. Керамика из кислорода, бария, меди и лантана при обычных условиях не проводит ток, но после нагревания становится сверхпроводником. На практике выгодно использовать вещества, которые могут пропускать электричество при 58 градусах по Кельвину и выше — температуре, превышающей отметку кипения азота.

Жидкость и газы, проводящие ток, используют реже твёрдых веществ. Но и они необходимы для изготовления современных электрических приборов.

Источник: https://220v.guru/elementy-elektriki/provodka/luchshie-provodniki-elektricheskogo-toka.html

Проводники и изоляторы 2020

Не каждый атом создается равным. Атомная структура изменяется от атома к атому. Некоторые атомы не способны удерживать свои внешние электроны. Они называются свободными электронами, потому что они могут свободно перемещаться от атома к атому. Эти электроны передают электрическую энергию от одной частицы к другой, тем самым передавая энергию в виде электричества.

Проводник — это вещество, которое предполагает свободный поток электрического заряда. Напротив, изолятор сопротивляется электричеству, что означает, что он оказывает прямо противоположное влияние на поток электронов. Электроны тесно связаны друг с другом внутри атомов, тем самым ограничивая свободный поток электрического заряда.

Давайте рассмотрим разницу между ними в деталях.

Что такое проводники?

Проводники — это вещества, которые позволяют свободным электронам беспрепятственно течь через них, тем самым передавая энергию в виде электричества, когда электроны свободно перемещаются от атома к атому. Простыми словами, проводники позволяют электронам свободно перемещаться от частицы к частице в одном или нескольких направлениях.

Если вы посылаете электрически заряженный электрон в проводник, он попадает на свободный электрон, в конечном счете сбивая его, пока он не ударит с других свободных электронов. Это вызывает некоторую цепную реакцию, создающую электрический заряд через материал.

Эти вещества могут легко пропускать через них электричество, поскольку их атомная структура позволяет свободным электронам свободно перемещаться из одной частицы в другую с легкостью.

Большинство металлов, таких как медь, алюминий, железо, золото и серебро, являются хорошими проводниками электричества, поскольку электроны могут свободно перемещаться из одного атома в другой. Например, медь является хорошим проводником, потому что он предвидит свободный поток электронов довольно легко.

Алюминий, с другой стороны, также является хорошим проводником, но он не так хорош, как медь. Он очень легкий, поэтому в основном используется в силовых распределительных кабелях. Давайте возьмем пример колбы. Когда вы включаете свет, электрический заряд проходит через провод, который заставляет лампу излучать свет.

Это ничего, кроме потока электронов между атомами.

Металлы являются наиболее распространенными проводниками электричества. Другие проводники включают полупроводники, электролиты, плазму и неметаллические проводники, такие как проводящие полимеры и графит.

Серебро — лучший проводник, чем медь, но в большинстве случаев нецелесообразно использовать из-за его более высокой стоимости. Однако он используется для специализированного и чувствительного оборудования, такого как спутники.

Даже воду, смешанную с примесями, такими как соль, можно рассматривать как проводник.

Что такое изоляторы?

Изоляторы, с другой стороны, представляют собой вещества, которые оказывают прямо противоположное влияние на поток электронов. Эти вещества препятствуют свободному потоку электронов, тем самым препятствуя потоку электрического тока.

Изоляторы содержат атомы, которые крепко держатся за свои электроны, что ограничивает поток электронов от одного атома к другому. Из-за тесно связанных электронов они не могут свободно перемещаться. Проще говоря, вещества, которые препятствуют протеканию тока, являются изоляторами.

Материалы имеют такую ​​низкую проводимость, что поток тока почти ничтожен, поэтому они обычно используются для защиты нас от опасных воздействий электричества.

Некоторыми распространенными примерами изоляторов являются стекло, пластик, керамика, бумага, резина и т. Д. Поток тока в электронных схемах не является статическим, а напряжение может быть довольно высоким в разы, что делает его немного уязвимым.

Иногда напряжение достаточно высокое, чтобы электрический ток протекал через материалы, которые даже не считаются хорошими проводниками электричества. Это может вызвать электрический шок, потому что человеческий организм также является хорошим проводником электричества.

Поэтому электрические провода покрыты резиной, которая действует как изолятор, который, в свою очередь, защищает нас от проводника внутри. Возьмите любой шнур в этом отношении, и вы увидите изолятор, и в случае, если вы увидите проводника, пришло время его заменить.

Разница между проводниками и изоляторами

  1. Проводники предвосхищают свободный поток электрического тока, потому что электроны свободно перемещаются от одного атома к другому с легкостью. С другой стороны, изоляторы выступают против электрического тока, потому что они не позволяют свободно течь электронов от одной частицы к другой.
  2. Проводники могут легко передавать энергию в виде электричества или тепла, если на то пошло.

    Однако изоляторы не могут так легко передавать электрическую энергию, чтобы они сопротивлялись электричеству.

  3. Проводники могут легко пропускать через них электричество из-за свободных электронов, присутствующих в их атомной структуре, но изоляторы, с другой стороны, не могут пропускать через них электричество.

  4. Проводники — это вещества, атомы которых не имеют тесно связанных электронов, поэтому они могут свободно перемещаться по одному или нескольким направлениям. Однако электроны плотно связаны внутри атомов в случае изоляторов, тем самым ограничивая любое движение электронов в пределах номинального диапазона приложенного напряжения.
  5. Проводники обычно имеют низкое сопротивление, но не нулевое сопротивление, если они не являются сверхпроводниками. Изоляторы имеют высокую устойчивость к электричеству.
  6. Проводники проводят электричество, а изоляторы изолируют электроэнергию. Например, металлическая проволока в электрическом шнуре является проводником, а оболочка или защитная крышка — изолятором.
  7. Прикосновение к живому проводнику может убить вас.С другой стороны, если вы коснетесь живого изолятора, это даже не повредит, потому что он сопротивляется электрическому току.

Проводники и изоляторы: сравнительная таблица

Проводники Изоляторы
Проводники — это материалы, которые обеспечивают свободный поток электронов от одного атома к другому. Изоляторы не позволят освобождать электроны от одного атома к другому.
Проводники проводят электричество из-за наличия свободных электронов в них. Изоляторы изолируют электричество из-за тесно связанных электронов, присутствующих в атомах.
Эти материалы могут пропускать через них электричество. Изоляционные материалы не могут пропускать через них электрический ток.
Атомы не могут крепко удерживать свои электроны. Атомы имеют тесно связанные электроны, тем самым неспособные хорошо передавать электрическую энергию.
Материалы, которые являются хорошими проводниками, обычно имеют высокую проводимость. Хорошие изоляционные материалы обычно имеют низкую проводимость.
В основном металлы — это хорошие проводники, такие как медь, алюминий, серебро, железо и т. Д. Обычные изоляторы включают резину, стекло, керамику, пластик, асфальт, чистую воду и т. Д.

Резюме для проводников и изоляторов

Оба проводника и изоляторы практически противоположны по свойствам и функциональности.

Наиболее распространенное различие между ними состоит в том, что, хотя проводники допускают свободный поток электронов от одного атома к другому, изоляторы ограничивают свободный поток электронов.

Проводники позволяют проходить через них электрическую энергию, в то время как изоляторы не пропускают через них электрическую энергию. Проводники имеют высокую проводимость, в то время как изоляторы имеют низкую проводимость.

Источник: https://ru.esdifferent.com/difference-between-conductors-and-insulators

Проводники и диэлектрики в электрическом поле

Одним из основных понятий электрики является электрическое поле. Благодаря ему, все электрические заряды способны взаимодействовать между собой. Оно образовано суммой электрических полей, существующих в каждом заряде. Все тела, помещенные в эту среду, разделяются, как проводники и диэлектрики в электрическом поле, выполняющие собственные функции, в зависимости от их физических свойств.

Проводники в электрическом поле

Проводники свободно пропускают через себя электрозаряды, поскольку содержат в себе заряженные свободные носители. Классические проводники представлены различными видами металлов и электролитами.

Когда проводник попадает в электрическое поле, в нем возникает движение свободных зарядов.

Оно прекращается при нулевом значении напряженности. Разноименные заряды могут разделяться и тогда наблюдается явление электростатической индукции. В этом случае прекращается перемещение свободных зарядов вдоль поверхности проводника.

Когда распределение достигает определенного значения, вектор напряженности в поле становится перпендикулярным проводнику.

Все эти свойства проводников, на которые воздействует поле используются на практике в различных приборах и устройствах.

Диэлектрики

Тела, которые состоят из веществ, не проводящих электроразряды, получили название диэлектриков. Это связано с тем, что в них отсутствуют свободные заряды. В электротехнике такие тела играют роль изоляторов.

При помещении диэлектрика в электрическое поле, в нем не будет происходить перераспределения зарядов. Сам диэлектрик будет нейтральным на обоих концах. Тем не менее, незаряженное диэлектрическое тело может притягиваться к заряженному объекту, поскольку поле создает поляризацию диэлектрика. При этом, разноименные заряды, связанные между собой и находящиеся в составе молекул и атомов, смещаются в противоположные стороны.

Диэлектрики могут быть полярными и неполярными. В первом случае распределение положительных и отрицательных зарядов в молекулах не совпадает. Эти нейтральные системы называются электрическими диполями.

В неполярных диэлектриках центры положительных и отрицательных зарядов совпадают. Их типичными представителями являются водород, кислород, инертные газы.

Следует отметить, что разделение веществ на проводники и диэлектрики достаточно условно, поскольку свободные заряды в различных количествах содержатся в каждом диэлектрике.

Источник: https://electric-220.ru/news/provodniki_i_diehlektriki_v_ehlektricheskom_pole/2014-03-29-564

Проводник — это что? Чему равно сопротивление проводника

В данной статье мы рассмотрим, что это – проводник. Здесь будут затронуты вопросы его определения, особенностей и свойств. Также мы остановимся на понятии потенциала проводника. Изучаемый объект представляет собой важное открытие и достижение науки, которое позволяет человеку на современном этапе развития снижать расходы на потребление важных и исчерпаемых ресурсов земли.

Введение

Проводник – это преимущественно вещество, а также определенная среда или материал, которые проводят электрический ток практически без препятствования. В проводниках находится большое количество свободно двигающихся носителей заряда (частиц с зарядом), которые способны в свободном виде перемещаться внутри проводников. Эти носители находятся под влиянием проводника, что приближен к объекту электронапряжения и создают ток проводимости.

Существует понятие однородного проводника. Это набор характеристик, которые являются одинаковыми в любой его точке. Примером может служить реохорд – устройство для измерения эл. сопротивления посредством мостового метода Уитстона.

В связи с наличием большого числа свободных переносчиков заряда и высокой степенью их подвижности, значение удельной величины, определяющей электропроводимость, достигает больших значений.

С точки зрения электродинамической науки, проводник – это среда, обладающая огромным значением тангенса, указывающего на угол диэлектрической потери. Рассмотрение происходит всегда посредством определения четкой частоты.

Идеальный проводник в таком случае — это материал, обладающий значением tgδ в бесконечно большом размере. Все остальные виды таких структур именуют реальными, или обладающими потерей.

Проводник – это часть электрической цепочки (соединительный провод, металлическая шина и т.д.).

Одними из наиболее распространенных проводящих структур твердого типа являются вещества металлов, полуметаллов и углеродов (графит и уголь). Среди проводящих жидкостей, примером может служить ртуть, электролитические растворы, а также металлические расплавы.

Среди газов, способных проводить ток, самым ярким представителем является газ в ионизированном виде (плазма).

Некоторые вещества, чаще полупроводники, могут изменять свои свойства проводимости, если изменять внешние условия вокруг них, например, повышать температуру или легировать.

Электрические проводники – это вещества и материалы, которые, в соответствии с формой движения частиц, делятся на первый и второй род. В первом случае свойство проводимости обуславливается электронным движением, а во втором, ионным.

Ток в проводнике

Под электрическим током подразумевают передвижение частиц, обладающих зарядом, в упорядоченном виде. Ток способен образоваться в разнообразных средах. Обязательным условием является наличие подвижных носителей заряда, которые смогут передвигаться под воздействием поля, которое приложили извне.

Силой тока называют скалярную величину, что может принимать два значения: положительное и отрицательное. Это зависит от произвольного направления, вдоль которого движутся частицы. Единицей, определяющей силу тока, является ампер (А).

Сила тока в проводника – это величина, что может обуславливаться направлением положительно заряженных элементов, образующих ток. В случае, когда ток был обусловлен частицами с зарядом «-», он приобретает направление, противоположное курсу реальной скорости движения частичек.

Силу тока определяют, анализируя отношение Dq (количество заряда), что был перенесенным сквозь проводниковое поперечное сечение, за единицу времеи Dt, к размерной величине самого интервала:

I = Delta q/ Dela t.

Понятие дрейфа

Показатель, указывающий на силу тока, тесно связан с явлением дрейфа заряж. частиц. Допустим, у нас есть проводник, на участке поперечного сечения (S) которого, есть определенное количество носителей заряда в конкретном объеме, соответствующем числу – n. Заряд всех носителей соответствует значению q0.

Если приложить внешнее электр. поле (E), то переносчики приобретут среднюю величину скорости v (показатель скорости дрейфа), которая направляется по направлению к противоположному полю.

Если допустить, что дрейф обладает постоянной скоростью (ток движется в одном темпе и с одной мощностью), можно рассчитать силу взаимосвязи дрейфа и перемещения частичек:

∆q=q0nv∆ts, из которого следует, что I=q0nvS

Полная величина заряда в общей величине объема цилиндра со значением образующей величины Dl = vDt равна.

Явление сопротивления

Электрическое сопротивление проводника – это величина, характеризующая его свойства, способные препятствовать переправе тока, а еще она равна соотношению напряжения на концевых участках провода к силе тока, который пропускают.

Понятие импеданса и явление волновой формы сопротивления описывают противодействие для цепи тока с переменными значениями, а также электромагнитные поля. Под понятием резистора в таком случае подразумевают радиодеталь, предназначение которой заключено во введении активного сопротивления в электр. цепь.

Сопротивление проводника – это величина, которую чаще всего обозначают буквой R (малой или большой). В некоторых пределах, оно является постоянным и рассчитывается по формуле:

R = U/I,

где R – это величина сопротивления, I – указывает на силу тока, что протекает между разными концами проводника под воздействием потенциальной разности (A), а U – это степень разности электр. потенциалов, которые расположены по его разные стороны.

Физический аспект явления

Электрический ток в проводнике – это упорядоченное перемещение частиц с определенным зарядом. Металлы обладают высокой электропроводимостью, что связано с наличием огромного количества носителей эл. тока (электроны проводимости), которые образуются из валентного ряда электронов металлов. Последние не должны принадлежать определенному виду атомов.

Электроны, которые передвигаются благодаря воздействию поля, начинают рассеиваться на неоднородности ионных решеток. Сам электрон в таком случае теряет силу импульса, а энергия, отвечающая за движение, превращается во внутреннюю энергию решетки кристаллического характера.

Она вызывает нагревание проводника вследствие прохождения эл. тока по нему. Важно помнить о том, что значение линейной зависимости, которая выражается законом Ома, не всегда соблюдается. Величина сопротивления обуславливается также особенностями его геометрии и свойствами удельного эл.

сопротивления материала, из которого его образовали.

Сечение проводника

Поперечное сечение проводника – это характеристика, тесно связанная с явлением его сопротивления. Дело в том, что носителем заряда в металле является свободный электрон. Находясь в хаотической форме движения, они подобны газовым молекулам. По этой причина, классическая физика определяет электроны в металле как электронный газ. Здесь применимы постановления закона для идеальных газов.

Показатель плотности эл. газа и структура кристаллических решеток обусловлены родом металла. По этой причине, сопротивление зависит от рода самого вещества, из которого был создан проводник. Также учитывается его длина, температура и площадь поперечного сечения.

Влияние последней объяснить можно благодаря тому, что уменьшение сечения электронного потока внутри проводника, с одним и тем же значением силы тока, приводит к уплотнению потока. Это вызывает усиление взаимодействия между электроном и частицей вещества проводника.

Потенциал

Электрический потенциал проводника – это особая характеристика проводника, представленная в виде скалярного энергетического параметра потенциальной энергии, которой «наполнен» положительно заряженный единичный вариант пробного заряда, который поместили в конкретную точку на поле. Для измерения подобного значения используют Международную систему единиц (СИ), а именно Вольт (1В = 1Дж/Кл). Электрический потенциал равняется соотношению величины потенциальной энергии, указывающей на взаимодействие заряда и поля к размерности самого заряда.

Источник: https://FB.ru/article/373555/provodnik---eto-chto-chemu-ravno-soprotivlenie-provodnika

Что такое электрическое сопроивление — определение и формулы

Для понимания закона Ома следует начинать с самого определения каждой величины в формуле. Важную роль здесь играет сопротивление, ведь разные материалы по-разному проводят через себя ток и чем больше будет сопротивляться проводник, тем выше будет напряжение. Подробнее об определении и формуле можно узнать в статье.

Что такое электрическое сопротивление

Эксперименты для изучения проводимости различных веществ проводили многие ученые. Исторически именно опыты немецкого ученого Георга Симона Ома (1789–1854 гг.) увенчались успехом и оставили след на дальнейшем развитии физики. С помощью своих экспериментов он смог доказать один из основных законов современной физики в электрической цепи и в 1826 году вывел всем известный закон Ома.

Георг Симон Ом

В своих опытах ученый использовал источник тока, разные проводники, а также прибор, способный зарегистрировать силу тока. Меняя проводники между собой, он подтвердил свою теорию о том, что если напряжение увеличивалось, то и сила тока вырастала. Помимо этого, он обнаружил, что выбранные проводники при увеличении напряжения проявляли себя по-разному.

Зависимости значений друг от друга можно изобразить на графике:

График зависимости тока и напряжения

Два графика в системе координат показывают, что в различных цепях сила тока может возрастать с различной скоростью по мере увеличения напряжения.

Главный вывод ученого гласил, что разные проводники имеют разные свойства проводимости. Именно поэтому было введено понятие электрического сопротивления.

Определение:

Электрическое сопротивление — это величина, характеризующая способность электрической цепи или проводника препятствовать прохождению сквозь него электрического тока.

https://www.youtube.com/watch?v=OH5UN-AZfQc

Сопротивление также определяется как коэффициент пропорциональности между напряжением и силой постоянного тока в законе Ома.

Ниже представлена схема, которую Георг Ом использовал в своих экспериментах.

Схема, использованная Омом в своих экспериментах

Единица измерения, признанная Международной системой единиц, получила обозначение Ом, по имени её первооткрывателя. Сопротивление проводника в 1 Ом дает силу тока в 1 ампер при напряжении в 1 вольт.

От чего зависит сопротивление

Доказано, что сопротивление возрастает с увеличением температуры. Но важно понимать, что есть такие сплавы, сопротивление которых не будет меняться или изменится незначительно с повышением температуры. Если же говорить об электролитах, то их сопротивление уменьшается с повышением температуры.

Проводимость находится в зависимости от материалов проводника, а также от его длины и сечения: чем больше сечение, тем выше будет проводимость, но при этом проводимость снизится при увеличении длины проводника. Сопротивление и проводимость — обратные понятия.

Можно представить это явление как диаметр водопроводной трубы, тогда явно видно, что чем он больше, тем выше будет проводимость и ниже сопротивление:

Зависимость сопротивления от сечения и длины

Также оно будет проявляться в нагреве проводника при протекании в нем тока, при этом чем меньше сечение проводника и выше сила тока — тем сильнее будет нагрев.

Формула сопротивления

Для записи этого явления в физике была выбрана латинская R, как сокращение от англ. resistance. Например, если сопротивление выбранного проводника составит 4 Ом, то в задаче это будет записано как R (или r) = 4 Ом.

Обычно значение в омах очень маленькое, поэтому на практике используют те проводники, которые имеют более высокое сопротивление, например мегаом — единица, равная миллиону Ом.

Для понимания общей формулы важно знать:

  • При увеличении напряжения растет сила тока, эти величины имеют пропорциональную зависимость, т.е. I~U;
  • При увеличении сопротивления происходит уменьшение силы тока, эти величины в обратной зависимости: I~1/R.

Формула, которую вывел Георг Ом, принята в следующем виде:

Формула сопротивления

в которой:

  • R — сопротивление (Ом);
  • U — напряжение (В);
  • I — сила тока (А)

Все величины в данной формуле взаимосвязаны друг с другом и оказывают взаимное влияние.

Резисторы

Резистор — это прибор с постоянным сопротивлением, такая радиодеталь помогает контролировать напряжение в цепи, понижая либо увеличивая его. По-другому говоря, это искусственное препятствие для электротока. Трудно представить любое электронное устройство без резисторов — их используют в компьютерах, телевизорах, сигнализациях, радиоприемниках и т. д.

На общих схемах резисторы маркируют следующим образом:

Обозначение резистора на схеме

Диагональными линиями обозначают мощность резистора до 1 Вт. Вертикальные линии и знаки V и X (римские цифры) обозначают мощность резистора соответственно значению римской цифры.

Последовательное и параллельное сопротивление

По схеме последовательного соединения резистор может подключиться к другому резистору только в одной точке, но в цепи таких последовательных точек может быть несколько. Как пример примем обозначения R1, R2, R3 для сопротивления и Uц для напряжения источника цепи. Как только включится подача питания, в цепи начнет проходить ток Iц. Таким образом, электричество протекает в каждом резисторе по очереди.

Схема последовательного соединения резисторов

Учитывая то, что ток проходит через каждый резистор, то значения их сопротивлений и силы тока будут суммироваться, то есть Iц = I1+I2+I3 и Rц = R1 +R2 + R3.

В таком случае, чем больше будет каждое отдельное значение, тем тяжелее электронам преодолеть участок цепи.

Особенность резисторов в том, что для расчета их мощности для разных типов соединения необходимо использовать разные формулы: для последовательных цепей — складываем, для параллельных — это должна быть обратная величина.

В таком варианте соединения элементы следуют друг за другом, поэтому конец одного будет соединяться с началом другого. Во время подключения этой схемы к сети образуется кольцо.

При параллельном соединении резисторы соединяются двумя контактами: так, к одной точке можно присоединить несколько резисторов.

Общее сопротивление всех элементов на участке цепи станет ниже при таком типе. Высчитывать его необходимо по формуле:

Формула общего сопротивления всех элементов на участке цепи

Формула расчета усложняется с увеличением числа элементов, которые соединены параллельно. На практике довольно редко кто-то объединяет больше 3 элементов, поэтому для сложного расчета будет достаточно знать следующие формулы:

Схемы и формулы расчета сопротивления

Важно знать, что при подстановке значений итоговый результат сопротивления параллельно присоединенных резисторов будет ниже самого маленького числа.

Источник: https://meanders.ru/chto-takoe-elektricheskoe-soprotivlenie.shtml

Что такое проводник в физике?

» Прочее »

Вопрос знатокам: Что такое проводники?

С уважением, Камила Ди

Лучшие ответы

Проводники — это вещества, проходящие электрический заряд

Проводник — определения в Интернете:

Проводни́к — вещество, проводящее электрический ток. Среди наиболее распространённых твёрдых проводников известны металлы, полуметаллы, углерод (в виде угля и графита) . Пример проводящих жидкостей при нормальных условиях — ртуть, электролиты, при высоких температурах — расплавы металлов. ..ru.wikipedia /wiki/Проводник Проводник — железнодорожный служащий сопровождающий пассажирский вагон в пути его следования и обслуживания пассажиров. ru.

wikipedia /wiki/Проводник_(железнодорожный_служащий) «ПРОВОДНИКЪ» 1888-1928 ru.wikipedia /wiki/Проводник_(завод) Проводник — узел, который используется для организации точек крепления на базовой верёвке. ru.wikipedia /wiki/Проводник_(узел) Проводник — посёлок в Коломенском районе Московской области, административный центр Проводниковского сельского поселения. ru.

wikipedia /wiki/Проводник_(Коломенский_район_Московской_области) некто, указывающий дорогу куда-либо; то же, что проводник электричества, материал, проводящий электрический ток, или элемент электрической схемы, сделанный из такого материала; (перен. ) некто, распространяющий, проводящий что-либо; (ж. -д. ..ru.wiktionary /wiki/РїСЂРѕРІРѕРґРЅРёРє провожатый, указывающий путь.

В туристской группе обычно выбирают старшего проводника (помощника командира группы по маршрутной части) , наиболее подготовленного и разбирающегося в тонкостях ориентирования туриста. .vertikal-pechatniki /bibl/slovar/p изолированный гибкий проводок, несущий электрические импульсы от генератора к сердцу. Электрод на конце эндокардиального (внутрисердечного) проводника вводится в сердце через вену.

Электрод миокардиального или эпикардиального проводника прикрепляется к сердечной ткани на внешней поверхности сердца. cardiomedics /dict вещество, основным электрическим свойством которого является электропроводность ГОСТ Р 2002-2003 .electromonter /term/term_p8 составная часть электропроводки, служащая для передачи тока. .majster m /terminologiya_elektromontazja вещество, обладающее высокой удельной проводимостью. edu.ulsu /w/index.php/РҐРёРјРёСЏ.

_РЎР» оварь_терминов Очень прибыльный способ заработка, частично включает в себя Диггерство. Суть его в том, что за определенную плату вы помогаете другому персонажу пройти подземелье, выполнить его задание (подобрать ему какой-то предмет, который ему нужен) . .antibk.site40 /encicl/3_13 проводники, не способные передавать на опоры изгибающие моменты СТ СЭВ 2726-80

.electromonter /term/term_g2

Для таких вопросов есть сайтик ru.wikipedia /wiki/РџСЂРѕРІРѕРґРЅРёРє

Проводни́ки — это тела, в которых имеются свободные носители заряда, то есть заряженные частицы, которые могут свободно перемещаться внутри этого тела. Среди наиболее распространённых твёрдых проводников известны металлы

ответ

Это видео поможет разобраться

Ответы знатоков

Вещество, хорошо пропускающее через себя, или передающее-эл. ток, звук, теплоту

Александр R9AAA Прокудин:

Проводники это то что проводит электрический ток. Примеры: все металлы (медь, алюминий, железо, свинец, олово, золото и самый лучший проводник — серебро) , растворы электролитов (раствор соли, раствор серной кислоты и т. д. ), плазма. С натяжкой можно причислить сюда и уголь.

Непроводники (правильно — диэлектрики) это то, что либо очень слабо, либо вообще не проводит эл. ток. Примеры: газы (кислород, водород, азот, воздух и т. д.

) , органические жидкости (растворители, масла, бензины) , дистиллированная вода (оочень чистая) , жидкие газы (жидкий азот) , пластмассы, резины (кроме специальных проводящих) , растворы неэлектролитов (раствор сахара, спирта и т. д.) , большинство минералов (камней) , стекла, фарфор, керамика.

Еще есть т. н. полупроводники — вещества, которые проводят эл. ток лучше чем непроводники и хуже чем проводники. Их отличительная особенность — способность проводить эл. ток сильно зависит от температуры, яркости света, радиации и микродобавок.

Примеры: кремний (то что в процессоре стоит) , германий, окислы меди, окислы цинка, соединения мышьяка и некоторые органические соединения.

На основе этих веществ изготовляют электронику (диоды, микросхемы, процессоры, транзисторы) , датчики температуры, радиации, магнитного поля и т. д. , светодиоды.

Уголь проводит электрический ток.
Резина является диэлектриком и тока не проводит.

Источник: https://dom-voprosov.ru/prochee/chto-takoe-provodnik-v-fizike

Понравилась статья? Поделиться с друзьями:
ЭлектроМастер
Сколько нужно солнечных панелей для частного дома

Закрыть