Что такое постоянный ток

Что такое постоянный ток

что такое постоянный ток

Постоянный ток, в отличие от переменного тока не изменяется со временем ни по силе, ни по направлению движения. Он возникает в результате воздействия постоянного напряжения и существует исключительно в замкнутой цепи. Во всех участках не разветвленной цепи имеет одинаковую силу. Самый простой его источник – гальванический элемент. Полярность такого химического источника не может самопроизвольно изменяться. К простым источникам относятся также и аккумуляторы.

Применение постоянного тока

Широкое распространение постоянный ток получил в различных областях техники. Практически,  все электронные схемы, используют в- своей работе для питания постоянный электрический ток. Переменный, при его практическом использовании, используется, в основном, на этапе передачи от генератора до потребителя. В электронном оборудовании, работающем от сети переменного тока, для его преобразования в постоянный применяют выпрямитель.

С целью уменьшения колебаний напряжения используют сглаживающие фильтры (например, для питания компьютерной техники). С этой же целью используют для защиты аппаратуры стабилизаторы напряжения или стабилизаторы тока. В- некоторых случаях, наоборот, он преобразуют в переменный специальными преобразователями – инверторами.

Таким образом, мы видим, что своевременная стабилизация напряжения напрямую влияет на качество работы и надежность электронной аппаратуры, особенно цифровой. Вся электронная аппаратура, использующая питание сети 220В, имеет внутренние блоки питания. Эти блоки служат для преобразования тока, получаемого из сети, в постоянный питания внутренних схем.

Одновременно происходит понижение напряжения, так как во внутренних схемах используется напряжение 3 – 12В постоянного.

Устройства, работающие от обычных батареек или аккумуляторов, могут быть без блока питания и, при необходимости, работают от внешних выпрямителей

Сети постоянного тока

В современных энергетических системах наряду с сетями переменного тока имеются и сети постоянного. Эти сети действуют в следующих  областях:

  • Тяговые электродвигатели, применяемые на различном транспорте, на флоте. На железнодорожном транспорте и в настоящее время сети делятся на постоянного и переменного тока;
  • Локальные электросети, не дающие постоянный ток в общую энергетическую систему: электролитическое рафинирование металлов – производство алюминия, меди, никеля, гальванопластика, низковольтная аппаратура – микропроцессоры, связь, сигнализация, игрушки;
  • Высоковольтные линии: применяются при передаче больших мощностей на значительные расстояния, в основном, по подводным кабелям.
  • Вставки постоянного тока, связывающие между собой не синхронизированные сети

В чем измеряется работа тока

Источник: https://electric-220.ru/news/chto_takoe_postojannyj_tok/2012-03-31-101

Постоянный электрический ток

что такое постоянный ток

Постоянный ток (DC — Direct Current) — электрический ток, не меняющий своей величины и направления с течением времени.

В реальности постоянный ток не может сохранять величину постоянной. Например, на выходе выпрямителей всегда присутствует переменная составляющая пульсаций. При использовании гальванических элементов, батареек или аккумуляторов, величина тока будет уменьшаться по мере расхода энергии, что актуально при больших нагрузках.

Постоянный ток существует условно в тех случаях, где можно пренебречь изменениями его постоянной величины.

Постоянная составляющая тока и напряжения. DC

Если рассмотреть форму тока в нагрузке на выходе выпрямителей или преобразователей, можно увидеть пульсации — изменения величины тока, существующие, как результат ограниченных возможностей фильтрующих элементов выпрямителя.

В некоторых случаях величина пульсаций может достигать достаточно больших значений, которые нельзя не учитывать в расчётах, например, в выпрямителях без применения конденсаторов.
Такой ток обычно называют пульсирующим или импульсным.

В этих случаях следует рассматривать постоянную DC и переменную AC составляющие.

Постоянная составляющая DC — величина, равная среднему значению тока за период.

AVG — аббревиатура Avguste — Среднее.

Переменная составляющая AC — периодическое изменение величины тока, уменьшение и увеличение относительно среднего значения .

Следует учитывать при расчётах, что величина пульсирующего тока будет равна не среднему значению, а квадратному корню из суммы квадратов двух величин — постоянной составляющей (DC) и среднеквадратичного значения переменной составляющей (AC), которая присутствует в этом токе, обладает определённой мощностью и суммируется с мощностью постоянной составляющей.

Вышеописанные определения, а так же термины AC и DC могут быть использованы в равной степени как для тока, так и для напряжения .

Отличие постоянного тока от переменного

По ассоциативным предпочтениям в технической литературе импульсный ток часто называют постоянным, так как он имеет одно постоянное направление. В таком случае необходимо уточнять, что имеется в виду постоянный ток с переменной составляющей.
А иногда его называют переменным, по той причине, что периодически меняет величину. Переменный ток с постоянной составляющей.
Обычно берут за основу составляющую, которая больше по величине или которая наиболее значима в контексте.

Следует помнить, что постоянный ток или напряжение характеризует, кроме направления, главный критерий — постоянная его величина, которая служит основой физических законов и является определяющей в расчётных формулах электрических цепей.
Постоянная составляющая DC, как среднее значение, является лишь одним из параметров переменного тока.

Для переменного тока (напряжения) в большинстве случаев бывает важен критерий — отсутствие постоянной составляющей, когда среднее значение равно нулю.Это ток, который протекает в конденсаторах, силовых трансформаторах, линиях электропередач. Это напряжение на обмотках трансформаторов и в бытовой электрической сети.

В таких случаях постоянная составляющая может существовать только в виде потерь, вызванных нелинейным характером нагрузок.

Параметры постоянного тока и напряжения

Сразу следует отметить, что устаревший термин «сила тока» в современной отечественной технической литературе используется уже нечасто и признан некорректным. Электрический ток характеризует не сила, а скорость и интенсивность перемещения заряженных частиц. А именно, количество заряда, прошедшее за единицу времени через поперечное сечение проводника.
Основным параметром для постоянного тока является величина тока.

Единица измерения тока — Ампер.
Величина тока 1 Ампер — перемещение заряда 1 Кулон за 1 секунду.

Единица измерения напряжения — Вольт.
Величина напряжения 1 Вольт — разность потенциалов между двумя точками электрического поля, необходимая для совершения работы 1 Джоуль при прохождения заряда 1 Кулон.

Для выпрямителей и преобразователей часто бывает важными следующие параметры для постоянного напряжения или тока:

Размах пульсаций напряжения (тока) — величина, равная разности между максимальным и минимальным значениями.
Коэффициент пульсаций — величина, равная отношению действующего значения переменной составляющей AC напряжения или тока к его постоянной составляющей DC.

Источник: https://tel-spb.ru/dc/

Постоянный ток: грядёт ли революция?

что такое постоянный ток

  • 20 ноября 2019 г. в 10:26
  • 48311

Гениальный изобретатель Томас Эдисон сделал ставку на постоянный ток и проиграл. Но сегодня постоянный поток ищет новых чемпионов.

Томас Эдисон считается одним из величайших изобретателей в истории. Являясь создателем таких изобретений, как фонограф и электрическая лампочка, он имеет 1093 патента на свое имя. Эдисон запустил свою первую электростанцию в 1882 году, которая, среди прочего, обеспечивала электроэнергией Уолл-стрит в Нью-Йорке. Электростанция использовала постоянный ток.

Одновременно сотрудник Эдисона Никола Тесла успешно развивал динамо-машину. Но у хорватского ученого была другая идея. Вместо постоянного тока Тесла сосредоточился на развитии переменного тока. После спора с Эдисоном, Тесла продолжил свою работу с соперником Эдисона Джорджем Вестингхаусом. Переменный ток показывал очевидные преимущества.

Для передачи на большие расстояния напряжение может быть легко отрегулировано с помощью трансформаторов. Используемый кабель также может быть тоньше и, следовательно, дешевле. Вместо признания этих преимуществ и поддержки переменного тока, Эдисон настаивал на своем и пытался дискредитировать своих конкурентов.

Эдисон утверждал, что недавно изобретённое электрическое кресло было оснащено технологией его соперников. Его послание было простым: переменный ток обречен. Хотя его кампания была успешной, победа Эдисона длилась недолго.

Чикагская всемирная ярмарка 1893 года была оснащена оборудованием, использующим переменный ток, предвещая покорение электрической революции 20-го века.

Позже Томас Эдисон признался сыну: «Я думаю, что момент, когда я отказался поддерживать переменный ток, был самой большой ошибкой в моей жизни».

Постоянный ток: возрождение старой технологии

Solar Smart Grid на Гаити

Сегодня, спустя 86 лет после смерти Эдисона, есть признаки того, что великий изобретатель не так уж и ошибался относительно постоянного тока, как когда-то считали люди. Идеи Эдисона становятся снова актуальными, так как ряд последних событий делает постоянный ток более привлекательным.

Раньше электричество производилось переменным током в генераторах крупных угольных или атомных электростанций, а также в гидротурбинах. Они распределяют энергию через сеть переменного тока. Трансформаторы позволяют увеличить напряжение до нескольких сотен тысяч вольт, удерживая ток в кабелях.

Но сейчас ряд поставщиков электроэнергии становятся на путь использования постоянного тока. К ним относятся, например, солнечные электростанции, которые обычно поддерживаются батареями или электрохимическими системами хранения.

Преобразование постоянного тока в переменный неизбежно связано с потерями, что делает сеть постоянного тока лучшим выбором для этих поставщиков.

Централизованное и децентрализованное энергоснабжение

Крупные электростанции уже давно доминируют в сегменте поставщиков электроэнергии, централизованно распределяя свою энергию в окружающие районы. Но рост использования возобновляемых источников энергии приводит к тому, что сеть становится более децентрализованной и более локальной, причем электричество часто потребляется там, где оно генерируется.

Преимущества переменного тока здесь бесполезны. Но даже на больших расстояниях переменный ток не идеален. Потери при передаче электроэнергии на расстоянии значительно увеличились.

Именно поэтому Китай строит сложные электросети на основе высоковольтных линий передачи постоянного тока (также известных как HVDC), которые способны передать большое количество энергии от гидроэлектростанций в глубине страны к шумным городам на побережье. В Германии правительство также планирует построить две подобные линии для передачи избыточной энергии ветра с побережья на юг.

Линии передачи HVDC в два раза дороже, чем обычные системы. Однако из-за меньших потерь энергии эти расходы окупают себя с расстояния около 400 километров или всего 60 километров в случае плавучих ветропарков.

Линии HVDC в настоящее время являются чрезвычайно надежными. Высокопроизводительная электроника позволила достичь прогресса в преобразовании энергии, что позволяет конвертировать прямые токи до 800 000 вольт без трансформатора.

Электричество в жилых домах и на фабриках распределяется либо по низковольтным электросетям, либо через штепсельные разъемы, либо через трехфазные токовые соединения. Все большее количество электроприборов требует постоянного тока. Компьютеры, светодиодные лампы и другие электронные устройства работают на постоянном токе и ранее требовали трансформатора для преобразования. В ближайшие годы к этому списку добавятся электромобили.

В промышленном оборудовании все чаще используются преобразователи частот со звеном постоянного тока для регулирования скорости. Сети постоянного тока с преобразованием центрального напряжения сделают все эти трансформаторы ненужными. На данный момент в автомобильной промышленности уже есть пилотные проекты, в которых комплексное производственное оборудование функционирует исключительно с постоянным током.

У них также есть батареи для кратковременного хранения энергии.

Увеличение потерь энергии при использовании постоянного тока

Наиболее убедительным аргументом в пользу этого изменения является эффективность. Когда угольные и атомные электростанции подают напряжение в сеть с переменным током, который затем потребляется непосредственно лампочками и пылесосами, его эффективность составляет около 65 %. Другими словами, около трети электрической энергии теряется, например, за счет потерь тепла.

Сегодня ситуация заметно усугубилась.

В результате использования фотогальванических систем и электростанций, наряду с увеличением использования батарей, все больше и больше электроэнергии подается в сеть, которая сначала должна быть преобразована из постоянного тока в переменный, что приводит к ее потерям.

Потребители также страдают. Нагревающиеся адаптеры являются свидетельством потерь энергии. Это означает, что эффективность нашей энергосети составляет всего лишь 56 %. Следовательно, необходимо фундаментальное переосмысление этих процессов.

Альтернативой является использование технологий постоянного тока (DC), таких как высоковольтные линии передачи постоянного тока (HVDC) для подачи электроэнергии на большие расстояния, вместе с низковольтными сетями постоянного тока в домашних хозяйствах и промышленности. Они могут быть напрямую подключены к электронным устройствам или промышленным приводам без необходимости использования адаптера или трансформатора.

При использовании фотогальванической системы на крыше жилого дома и электромобиля в гараже эффективность будет непревзойденной. Электрическая сеть, систематически настроенная на постоянный ток, обеспечит общую эффективность в 90 %. Если эффективность будет всего на 10 % выше, тогда две крупнейшие угольные электростанции в Германии могут быть отключены. Это позволит сэкономить 63 миллиона тонн CO2, или 12 % от общего объема выбросов электростанций в Германии.

Для оксидов азота этот показатель еще выше — 29 %.

Технические и экономические проблемы перехода на постоянный ток

Несмотря на то, что высоковольтная передача постоянного тока в настоящее время является проверенной и общепринятой технологией, по-прежнему существует ряд технических и экономических вопросов, в том числе о сетях с низким напряжением, на которые необходимо ответить:

  • Сможет ли постоянный ток заменить переменный в широком спектре применений?
  • Будут ли обе технологии продолжать существовать одновременно друг с другом?
  • Как могло бы выглядеть подобное сосуществование?
  • Какие технические и экономические препятствия необходимо преодолеть?
  • Какие меры безопасности будут необходимы и одновременно эффективны?
  • Какие изменения потребовал бы переход на постоянный ток в сети и как это повлияет на потребителей?

Преимущества такого «переключения» настолько значительны, что не может быть никаких сомнений в том, что приближается смена парадигмы. Обладая серьезным опытом в области разработки соединительных технологий, LAPP сразу же занимает здесь ведущее положение.

Компания является ассоциированным партнером в рамках проекта DC-INDUSTRIE, входящего в 6-ю программу исследований энергетики, которая проводится федеральным министерством экономики и энергетики Германии (BMWi).

Исследовательский проект DC-INDUSTRIE посвящен вопросу о том, как можно создать сети постоянного тока с центральным процессом конверсии в качестве альтернативы энергосбережению, особенно при эксплуатации оборудования на производственных линиях, а также о том, как лучше использовать возобновляемые источники энергии.

Георг Ставови, член правления по инновациям LAPP: «В компании LAPP мы видим большой потенциал в постоянном токе и можем способствовать исследованиям данного направления с нашими обширными знаниями».

Источник: https://www.elec.ru/articles/postoyannyj-tok-gryadyot-li-revolyuciya/

Переменный и постоянный ток: в чем разница, история развития, применение

Детей учат, что пальцы в розетку совать нельзя! А почему? Потому что будет плохо. С более подробным объяснением часто бывают проблемы: какое-то там напряжение, ток, что-то куда-то течет. Чтобы вы в будущем могли сами объяснить своим детям, что к чему, мы сейчас объясним вам. Эта статья про переменный и постоянный токи, их отличия, применение и историю электричества вообще. Науку нужно делать интересной, и мы скромно пытаемся этим заниматься по мере сил.

Например: какой ток у нас в розетках?  Переменный, конечно! Напряжением 220 Вольт и частотой 50 Герц. А сеть, по которой передается ток — трехфазная. Кстати, если при словах «фаза» и «ноль» вы впадаете в ступор, почитайте что это такое, и день будет прожит вдвойне не зря! Но не будем забегать вперед. Обо всем по порядку.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

ЭТО ИНТЕРЕСНО:  Как ток зависит от частоты

Краткая история электричества

Кто изобрел электричество? А никто! Люди постепенно понимали, что это такое и как им пользоваться.

Все началось в 7 веке до нашей эры, в один солнечный (а может и дождливый, кто знает) день. Тогда греческий философ Фалес заметил, что, если потереть янтарь о шерсть, он будет притягивать легкие предметы.

Потом были Александр Македонский, войны, христианство, падение Римской империи, войны, падение Византии, войны, средневековье, крестовые походы, эпидемии, инквизиция и снова войны. Как вы поняли, людям было не до какого-то там электричества и натертых шерстью эбонитовых палочек.

В каком году изобрели слово «электричество»? 1600 году английский естествоиспытатель Уильям Гилберт решил написать труд «О магните, магнитных телах и о большом магните — Земле». Именно тогда и появился термин «электричество».

Через сто пятьдесят лет, в 1747 году Бенджамин Франклин, которого мы все очень любим, создал первую теорию электричества. Он рассматривал это явление как флюид или нематериальную жидкость.

Именно Франклин ввел понятие положительного и отрицательного зарядов (до этого разделяли стеклянное и смоляное электричество), изобрел молниеотвод и доказал, что молния имеет электрическую природу.

Бенджамина любят все, ведь его портрет есть на каждой стодолларовой купюре. Помимо работы в точных науках, он был видным политическим деятелем. Но вопреки распространенному заблуждению, Франклин не был президентом США.

Дальше пойдет перечисление важных для истории электричества открытий.

1785 год – Кулон выясняет, с какой силой противоположные заряды притягиваются, а одноименные отталкиваются.

1791 год – Луиджи Гальвани случайно заметил, что лапки мертвой лягушки сокращаются под действием электричества.

Принцип работы батарейки основан на гальванических элементах. Но кто создал первый гальванический элемент? Основываясь на открытии Гальвани, другой итальянский физик Алессандро Вольта в 1800 году создает столб Вольта – прототип современной батарейки.

На раскопках рядом с Багдадом нашли батарейку возрастом больше двух тысяч лет. Какой древний айфон с ее помощью подзаряжали — остается загадкой. Зато известно точно, что батарейка уже «села».

Этот случай как бы говорит: может быть, люди знали об электричестве намного раньше, но потом что-то пошло не так.

Уже в 19 веке Эрстед, Ампер, Ом, Томсон и Максвелл совершили настоящую революцию.

Был открыт электромагнетизм, ЭДС индукции, электрические и магнитные явления связали в единую систему и описали фундаментальными уравнениями.

Кстати! Если у вас нет времени, чтобы самостоятельно разбираться со всем этим, для наших читателей сейчас действует скидка 10% на любой вид работы

20 век принес квантовую электродинамику и теорию слабых взаимодействий, а также электромобили и повсеместные линии электропередач. Кстати, знаменитый электромобиль Тесла работает на постоянном токе.

 

Конечно, это очень краткая история электричества, и мы не упомянули очень много имен, которые повлияли на прогресс в этой области. Иначе пришлось бы написать целый многотомный справочник.

Постоянный ток

Сначала напомним, что ток – это движение заряженных частиц.

Постоянный ток – это ток, который течет в одном направлении.

Типичный источник постоянного тока – гальванический элемент. Проще говоря, батарейка или аккумулятор. Один из древнейших артефактов, связанных с электричеством – багдадская батарейка, которой 2000 лет. Предполагают, что она давала ток напряжением 2-4 Вольта.

 

Где используется постоянный ток:

  • в питании большинства бытовых приборов;
  • в батарейках и аккумуляторах для автономного питания приборов;
  • для питания электроники автомобилей;
  • на кораблях и подводных лодках;
  • в общественном транспорте (троллейбусах, трамваях).

Проще всего представить постоянный ток наглядно, на графике. Вот как он выглядит:

Постоянный ток

Бытовые приборы работают на постоянном токе, но в розетки сети в квартире приходит переменный ток. Практически везде постоянный ток получается путем выпрямления переменного.

Переменный ток

Переменный ток – это ток, который меняет величину и направление. Причем меняет в равные промежутки времени.

Переменный ток используется в промышленности и электроснабжении. Именно его получают на станциях и отправляют к потребителям. Уже на месте преобразование переменного электрического тока в постоянный происходит с помощью инверторов.

Переменный ток — alternating current (AC). Постоянный ток — direct current (DC). Аббревиатуру AC/DC можно увидеть на трансформаторных будках, где происходит преобразование. А еще это название одной отличной австралийской рок-группы.

А вот и наглядное изображение переменного тока.

Переменный ток

Переменный ток течет в цепи в двух направлениях: туда и обратно. Одно из них считается положительным, а второе — отрицательным.

Так как величина тока меняется не только по направлению, но и по величине, не думайте, что в вашей розетке постоянно 220 Вольт. 220 — это действующее значение напряжения, которое бывает 50 раз в секунду. Кстати, в Америке используется другой стандарт переменного тока в сети: 110 Вольт и 60 Герц.

Война токов

Активное использование постоянного тока началось в конце 19 века. Тогда Эдисон довел до ума лампочку (1890) и основал первые в Нью-Йорке электростанции, которые производили постоянный ток напряжением 110 Вольт.

Использование постоянного тока было связано с существенными потерями при его передаче на большие расстояния. Переменный ток нельзя было использовать из-за того, что не было соответствующих счетчиков и моторов, работавших на переменном токе. Так же был затруднен процесс преобразования постоянного тока в переменный. При этом переменный ток можно было без потерь передавать на большие расстояния.

В то время в Америку из Сербии приехал Никола Тесла, который устроился на работу в компанию к Эдисону. Тесла изобрел электродвигатель переменного тока, понял все выгоды и предложил Эдисону его использование.

Тесла и Эдисон

Эдисон не послушал Теслу и к тому же не выплатил ему зарплату. Так и началось знаменитое противостояние изобретателей — война токов.

Она длилась более ста лет и закончилась в 2007 году. Тогда Нью-Йорк полностью перешел на электроснабжение переменным током.

Почему переменный ток опаснее постоянного

В войне токов, чтобы не потерпеть убытки и финансовый крах от внедрения и использования идей Теслы, Эдисон публично демонстрировал, как переменный ток убивает животных. Случай, когда какой-то американский гражданин погиб от удара переменным током, был очень подробно и широко освещен в прессе.

 

Для человека переменный ток в общем случае действительно опаснее постоянного. Хотя всегда нужно учитывать величину тока, его частоту, напряжение, сопротивление человека, которого бьет током. Рассмотрим эти нюансы:

  1. Переменный ток частотой 50 Герц в три-четыре раза опаснее для жизни, чем постоянный ток. Если частота тока более 1000 Герц, то он считается менее опасным.
  2. При напряжениях около 400-600 Вольт переменный и постоянный токи считаются одинаково опасными. При напряжении более 600 Вольт более опасен постоянный ток.
  3. Переменный ток в силу своей природы и частоты сильнее возбуждает нервы, стимулируя мышцы и сердце. Именно поэтому он несет большую опасность для жизни.

С каким бы током вы не работали, соблюдайте осторожность и будьте бдительны! Берегите себя и свои нервы, а также помните: сделать это эффективно поможет профессиональный студенческий сервис с лучшими экспертами.

Источник: https://Zaochnik-com.ru/blog/peremennyj-i-postoyannyj-tok-v-chem-raznica-istoriya-razvitiya-primenenie/

Чем отличается переменный ток от постоянного

Сам по себе электрический ток представляет собой ничто иное, как происходящее в упорядоченном виде движение всех заряженных частиц в газах, электролитах и металлических объектах. К данным элементам, несущим определенный заряд, относятся ионы и электроны. Сегодня мы постараемся прояснить, чем отличается переменный ток от постоянного, ведь на практике приходится часто сталкиваться с обоими видами.

Характеристики постоянного тока

Direct Current или DC так по-английски обозначают подобную разновидность, для которой присуще свойство на протяжении любого отрезка времени не менять свои параметры. Маленькая горизонтальная черточка или две параллельные со штриховым исполнением одной из них – графическое изображение постоянного тока.

Область применения – большинство моделей бытовых электроприборов и электронных устройств, включая компьютерную технику, телевизоры и гаджеты, использование в домашних сетях и автомобилях. Для преобразования переменного тока в постоянный в зоне розетки применяются трансформаторы напряжения с наличием выпрямителей или специализированные блоки питания.

В качестве широко распространенного примера потребления постоянного тока можно привести практически все электроинструменты, которые эксплуатируются с батареями. Аккумуляторное устройство остается в любом случае источником питания постоянного типа. Преобразование в переменный достигается в случае необходимости при помощи инверторов – специальных элементов.

В чем заключается принцип работы переменного тока

Английская аббревиатура АС (Alternating Current) обозначает ток, меняющий на временных отрезках свое направление и величину. Отрезок синусоиды «~» – его условная маркировка на приборах. Применяется также нанесение после этого значка и других характеристик.

Ниже приведен рисунок с главными характеристиками данного вида тока – номинальными показателями частоты и действующего напряжения.

Следует отметить особенности изменения на левом графике, выполненном для однофазного тока, величины и направления напряжения с осуществлением перехода на ноль за определенный промежуток времени Т. На одну треть периода выполняется смещение трех синусоид при трехфазном токе на другом графике.

Отметками «а» и «б» обозначены фазы. Любой из нас имеет представление о наличии в обычной розетке 220В. Но для многих будет открытием, что максимальное или именуемое по-другому амплитудным значение больше действующего на величину равную корню из двух и составляет 311 Вольт.

Очевидно, что в случае с током постоянного вида параметры направления и напряжения остаются неизменными, а вот для переменного наблюдается трансформация данных величин. На рисунке обратное направление – это область графика ниже нуля.

Переходим к частоте. Под этим понятием подразумевают отношение периодов (полных циклов) к условной единице временного отрезка меняющегося тока. Данный показатель измеряется в Герцах. Стандартная европейская частота – 50, в США применяемый норматив – 60Г.

Эта ве6личина показывает количество изменений направления тока за одну секунду на противоположное и возвращение в исходное состояние.

Переменный ток присутствует при прямом подключении приборов потребления к электрощитам и в розетках. По какой причине здесь отсутствует постоянный ток? Это сделано для того, чтобы получить возможность без особых потерь получать нужное напряжение в любом количестве способом применения трансформаторов. Эта методика остается лучшим способом передавать электроэнергию в промышленных масштабах на значительные расстояния с минимальными потерями.

Номинальное напряжение, которое подается мощными генераторами электростанций, на выходе составляет порядка 330 000-220 000 Вольт.

На подстанции, расположенной в зоне потребления, происходит трансформация данной величины до показателей 10 000В с переходом в трехфазный вариант 380 Вольт. Выполняется подача в отдельный дом и на вашу квартиру попадает напряжение однофазного типа.

Напряжение между нулем и фазой составит 220 В, а в щите между разными фазами подобный показатель равняется 380 Вольт.

Двигатели асинхронной конструкции, работающие с переменным током, значительно надежнее и отличаются более простой конструкцией, чем аналоги постоянного тока.

Преобразование переменного тока в постоянный

Для варианта подобной трансформации оптимальный способ – использование выпрямителей:

  • Подключение диодного моста – первый шаг в этой процедуре. Конструкция из 4 диодов с необходимой мощностью способствует процессу своеобразного срезания верхних границ уже знакомых нам синусоид переменного вида. Таким образом достигается получение однонаправленного тока.
  • Далее выполняется параллельное подключение на выход исправляющего провалы между пиковыми точками синусоиды сглаживающего фильтра или с диодного моста конденсатора. Выделенная зеленым маркером синусоида получилась после прохождения диодного мостика.

Изменения в результате снижения пульсации отображены в синем цвете.

Преобразователь постоянного тока в переменный

В данном случае процесс выглядит достаточно сложным. Инвертор – стандартный прием в бытовых условиях, представляет собой генератор напряжения периодического вида, получаемого из приближенного к синусоиде постоянного.

Высокие цены на подобное устройство обусловлены сложностью конструкции. Стоимость в значительной степени обусловлена максимальной мощностью тока на выходе.

Применяется в довольно редких ситуациях. Например, в случае необходимости подсоединить к электросети автомобиля какой-то инструмент или приборы.

Источник: https://uelektrika.ru/osnovy-yelektrotekhniki/chem-otlichaetsya-peremennyy-tok-ot-post/

Чем отличается постоянный ток от переменного

Постоянный и переменный ток

В предыдущей статье, что такое электрический ток ты узнал, как происходит упорядоченное движение электронов в замкнутой цепи. Теперь, я расскажу тебе, каким бывает электрический ток. Электрический ток бывает постоянный и переменный.

                                                                                                                                   Чем отличается переменный ток от постоянного?                                                       Характеристики постоянного тока.

 Преобразование переменного тока в постоянный

Из переменного тока, можно получить постоянный ток, для этого достаточно  подключить сети переменного тока диодный мост или как его еще называют “выпрямитель”.  Из названия “выпрямитель” как нельзя лучше понятно, что делает диодный мост, он выпрямляет синусоиду переменного тока в прямую линию тем самым заставляя двигаться электроны в одном направлении.

   что такое диод  и как работает диодный мост , ты можешь узнать в моих следующих статьях.

Источник: http://slojno.net/peremennyy-i-postoyannyy-tok/

Законы постоянного тока – FIZI4KA

ЕГЭ 2018 по физике ›

Электрический ток – это упорядоченное движение заряженных частиц.

Условия существования электрического тока в проводнике:

  • наличие свободных заряженных частиц;
  • наличие электрического поля.

Напряженность электрического поля должна быть постоянной.

Цепь постоянного тока должна быть замкнутой.

Важно!
Тепловое движение заряженных частиц нельзя назвать электрическим током, так как оно беспорядочное.

Электрический ток можно обнаружить по его действиям:

  • тепловому – при протекании тока проводник нагревается;
  • химическому – изменяется состав вещества при прохождении электрического тока (электролиз);
  • магнитному – электрический ток создает магнитное поле.

За направление тока принимают направление движения положительно заряженной частицы.

Сила тока – это скалярная физическая величина, равная отношению заряда, прошедшего через поперечное сечение проводника, ко времени, за которое этот заряд переносится.

Обозначение – ​\( I \)​, единица измерения в СИ – ампер (А) (является основной).

Вычисляется по формуле:

Если за одинаковые промежутки времени через поперечное сечение проводника проходит одинаковый заряд, то ток постоянный.

Для измерения силы тока используют амперметр.

Условное обозначение на схемах:

Амперметр – измерительный прибор для определения силы тока в электрической цепи.

При измерении силы тока амперметр включают в цепь последовательно с тем прибором, силу тока в котором измеряют, и с соблюдением полярности. Клемму амперметра со знаком «+» нужно обязательно соединять с проводом, идущим от положительного полюса источника тока.

Для того чтобы включение амперметра не влияло на величину измеряемого тока, его сопротивление по сравнению с сопротивлением нагрузки должно быть как можно меньшим. Каждый амперметр рассчитывается на некоторое определенное максимальное значение измеряемой величины. Но возникают ситуации, когда необходимо выполнить измерение силы тока больше предельно допустимого значения силы тока.

Для этого параллельно амперметру присоединяют проводник (шунт), по которому проходит часть измеряемого тока. Значение сопротивления этого проводника рассчитывается так, чтобы сила тока, проходящего через амперметр, не превышала его максимально допустимого значения.

Сопротивление шунта рассчитывается по формуле:

ЭТО ИНТЕРЕСНО:  Как сделать вентилятор своими руками

где ​\( I_ц \)​ – сила тока в цепи, \( I_а \) – максимально допустимая для данного амперметра сила тока, \( R_а \) – сопротивление амперметра, ​\( n=\frac{I_ц}{I_а} \)​.

При этом цена деления прибора увеличивается в n раз, а точность измерений во столько же раз уменьшается.

Работающим с электрическими цепями надо знать, что для человеческого организма безопасной считается сила тока до 1 мА. Сила тока больше 100 мА приводит к серьезным поражениям организма.

Постоянный электрический ток. Напряжение

В проводнике, по которому протекает ток, заряды движутся под действием сил электростатического поля. Работу электростатических сил характеризуют разностью потенциалов или напряжением.

Электрическое напряжение – скалярная физическая величина, равная отношению работы по перемещению электрического заряда между двумя точками цепи к величине этого заряда.

Обозначение – ​\( U \)​, единица измерения в СИ – вольт (В).

Формула для вычисления:

Напряжение равно разности потенциалов только в том случае, если рассматриваемый участок цепи не содержит источник тока (ЭДС = 0).

Измеряют напряжение вольтметром.

Изображение вольтметра на схеме:

При измерении напряжения вольтметр включают в цепь параллельно с тем прибором, напряжение на котором измеряют, и с соблюдением полярности. Клемму вольтметра со знаком «+» нужно обязательно соединять с проводом, идущим от положительного полюса источника тока. Для того чтобы включение вольтметра не влияло на измерение напряжения, его сопротивление должно быть большим.

Для измерения напряжения больше, чем допустимое для данного вольтметра, используют добавочное сопротивление – резистор, включаемый последовательно с вольтметром.

Величина добавочного сопротивления рассчитывается по формуле:

где ​\( U \)​ – напряжение, которое нужно измерить, ​\( U_В \)​ – напряжение, на которое рассчитан вольтметр, ​\( n=\frac{U}{U_В} \)​, ​\( R_В \)​ – сопротивление вольтметра.

При этом цена деления прибора увеличивается в ​\( n \)​ раз, а точность измерений во столько же раз уменьшается.

Закон Ома для участка цепи

Взаимосвязь между силой тока, протекающей по проводнику, и напряжением на его концах была экспериментально установлена Г. Омом и носит название закона Ома для участка цепи.

Закон Ома для участка цепи

Сила тока прямо пропорциональна напряжению на концах участка и обратно пропорциональна его сопротивлению:

График зависимости силы тока от напряжения называется вольт-амперной характеристикой. Из закона Ома для участка цепи следует, что при постоянном сопротивлении сила тока прямо пропорциональна напряжению. Следовательно, вольт-амперная характеристика для металлического проводника представляет собой прямую линию, проходящую через начало координат.

Проводник с такими свойствами называется резистором.

Угол наклона графика к оси напряжений зависит от сопротивления проводника. Тангенс угла наклона графика равен проводимости резистора.

Электрическое сопротивление. Удельное сопротивление вещества

Электрическое сопротивление – свойство материала проводника препятствовать прохождению через него электрического тока.

Обозначение – ​\( R \)​, единица измерения в СИ – Ом.

Объяснить наличие сопротивления можно на основе строения металлических проводников. Свободные электроны при движении по проводнику встречают на своем пути ионы кристаллической решетки и другие электроны и, взаимодействуя с ними, неизбежно теряют часть своей энергии. Различные металлические проводники, имеющие различное атомное строение, оказывают различное сопротивление электрическому току.

Чем больше сопротивление проводника, тем хуже он проводит электрический ток.

Сопротивление различных проводников зависит от материала, из которого они изготовлены, их длины, геометрической формы и температуры. Для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.

Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 м2.

Обозначение – ​\( \rho \)​, единица измерения в СИ – Ом·м.

Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.

Например, удельное сопротивление меди равно 1,7·10-8 Ом·м, т. е. медный проводник длиной 1 м и сечением 1 м2 обладает сопротивлением 1,7·10-8 Ом. На практике часто используют единицу удельного сопротивления (Ом·мм2)/м.

Электрическое сопротивление проводника прямо пропорционально длине проводника и обратно пропорционально площади поперечного сечения проводника.

Формула для вычисления:

Сопротивление проводника увеличивается с ростом температуры. Удельное сопротивление зависит от температуры:

где ​\( \rho_0 \)​ – удельное сопротивление при ​\( T_0 \)​ = 293 К (20°С), ​\( \Delta T=T-T_0 \)​, ​\( \alpha \)​ – температурный коэффициент сопротивления.

Единица измерения температурного коэффициента сопротивления – К-1.

При нагревании увеличивается интенсивность движения частиц вещества. Это создает трудности для направленного движения электронов. Увеличивается число столкновений свободных электронов с ионами кристаллической решетки.

Свойство изменения сопротивления при изменении температуры используется в термометрах сопротивления. Эти приборы могут измерять температуру, основываясь на зависимости сопротивления от температуры. У термометров сопротивления высокая точность измерений.

Электродвижущая сила. Внутреннее сопротивление источника тока

Для создания электрического поля в проводниках используют источник тока. Внутри источника тока происходит перераспределение зарядов, в результате которого на полюсах источника возникает избыток зарядов разных знаков.

Виды источников тока:

  • электрофорная машина;
  • термопара;
  • фотоэлемент;
  • аккумулятор;
  • гальванический элемент.

Сторонними называются силы неэлектрической природы, действующие внутри источника тока.

Когда проводник соединяют с полюсами источника, то на внешнем участке цепи заряженные частицы движутся под действием электростатической силы. А внутри источника на заряды действуют сторонние и электростатические силы.

Под действием этих сил внутри источника происходит перемещение положительных зарядов от отрицательного полюса источника к положительному. Это перемещение происходит до тех пор, пока сторонние силы не станут равными электростатическим. При переносе заряда эти силы совершают работу. Работа сторонних сил по перемещению заряда компенсирует потери энергии заряженными частицами при их движении по цепи.

Электродвижущей силой (ЭДС) называется отношение работы сторонних сил по перемещению положительного заряда к величине этого заряда.

Источник: https://fizi4ka.ru/egje-2018-po-fizike/zakony-postojannogo-toka.html

Постоянный и переменный ток: преимущества и недостатки ⋆ diodov.net

Какой электрический ток лучше: постоянный или переменный ток? Чтобы дать ответ на данный вопрос нужно оценить их преимущества и недостатки по следующим основным направлениям: выработка, передача, распределение и потребление электроэнергии. Проще говоря, нужно ответить на следующие вопросы. Какой род тока проще и дешевле получить, затем передать его на большое расстояние, после чего распределить электроэнергию между потребителями. Потребители какого рода энергии более эффективны?

Сегодня преимущественное большинство электрической энергии, добываемой или генерируемой в мире, выпадет на переменный ток. И в первую очередь это связано с тем, что переменный ток проще преобразовывать из более низкого напряжения в более высокое и наоборот, то есть он проще в трансформации.

Место производство электрической энергии большой мощности, к сожалению пока что невозможно базировать в тех местах, где хотелось бы, то есть непосредственно рядом с потребителями. Например, мощную гидроэлектростанцию можно соорудить только на полноводной реке и то не в каждом месте. А конечный потребитель может находиться на расстоянии сотни и тысячи километров от электростанции.

Поэтому очень важно обеспечить такие условия, чтобы минимизировать потери мощности в проводах линии электропередачи ЛЭП. В этом случае потери электроэнергии снижаются с ростом напряжения. Давайте остановимся на этом более подробно.

Предположим, имеется некая электростанция, а точнее ее генератор, выдающий мощность 1000 кВт и нам необходимо передать эту мощность потребителю, который находится на расстоянии, например на 100 км от генератора.

Для сравнения электрическую энергию будем передавать напряжением 10 кВ и 100 кВ. При заданных мощности и напряжениях определим величины токов, протекающих в проводах.

I1 = P/U1 = 1000 кВт/10 кВ = 100 А.

I2 = P/U2 = 1000 кВт/100 кВ = 10 А.

Как мы видим, при увеличении напряжения в 10 раз, ток снижается тоже в 10 раз.

Потери электроэнергии в проводах ЛЭП и не только в них определяются квадратом тока, протекающего в них и сопротивлением самого провода. Для простоты расчет примем сопротивление проводов, равным 10 Ом. Подсчитаем потери мощности для обоих случаев.

Pпот1 = I12∙R = 1002∙10 = 100000 Вт = 100 кВт.

Pпот2 = I22∙R = 102∙10 = 1000 Вт = 1 кВт.

Теперь, как мы видим, с ростом напряжения в 10 раз потери электроэнергии снижаются в 100 раз! При более низком напряжении доля потерь в проводах составляет 10 % от мощности, выдаваемой генератором. А при более высоком напряжении эта доля составляет всего 0,1 %. Поэтому очень важным параметров сравнения родов тока является возможность повышать напряжение, а затем его снижать в конечных пунктах.

Можно было бы и не повышать напряжение, а для снижения потерь применять более толстые провода, но такой подход экономически не оправдан, поскольку медные провода стоят денег.

Также можно было бы и не повышать напряжение генератора, а создать такой генератор, который сразу бы выдавал высокое напряжения. Но здесь возникают сложности при изготовлении таких генераторов. Сложности связаны в основном с изоляцией высоковольтных элементов генератора. Короче говоря, изготовить трансформатор на высокое напряжение гораздо проще и дешевле, нежели генератор.

Преимущества переменного тока

Вопрос повышения и снижения переменного напряжения при нынешнем уровне технического развития решается гораздо проще, чем постоянного электрического тока.

Такие преобразования довольно просто выполняются с помощью относительно простого устройства – трансформатора. Трансформатор обладает высоким коэффициентом полезного действия, который достигает 99 %. Это значит, что не более одного процента мощности теряется при повышении или снижении напряжения. К тому же трансформатор позволяет развязать высокое напряжение с более низким, что для большинства электроустановок является очень весомым аргументом.

Применение трехфазной системы переменного тока позволяет еще больше повысить эффективность системы электроснабжения. Для передачи электричества аналогичной мощности потребуется меньше проводов, чем при однофазном переменном токе. К тому же трехфазный трансформатор меньше габаритов однофазного трансформатора равной мощности.

Электрические машины переменного тока, в частности асинхронные двигатели с короткозамкнутым ротором имеют гораздо проще конструкцию, чем двигатели постоянного тока.

Главным преимуществом трехфазных асинхронных двигателей является отсутствие коллекторно-щеточного узла. Благодаря чему снижаются расходы на изготовление и эксплуатацию таких электрических машин.

Кроме того за счет отсутствия коллекторно-щеточного узла асинхронные двигатели имеют в разы большую мощность по сравнению с двигателями постоянного тока.

Недостатки постоянного тока

Из выше изложенного следуют такие недостатки.

  1. Сложность повышения и снижения напряжения, то есть преобразования электроэнергии постоянного тока. В первую очередь это вызвано сложность конструкций преобразователей. Поскольку необходимы мощные полупроводниковые ключи, рассчитанные на высокое напряжение. Отсутствие которых приводит к большому числу последовательно и параллельно соединенных полупроводниковых приборов. В результате снижается надежность всего преобразователя, увеличивается стоимость и возрастают потери мощности.
  2. Электрические машины имеют более сложную конструкцию, поэтому менее надежны и более затратные, как в производстве, так и в эксплуатации.
  3. Сложности в развязке высокого и низкого напряжений.

Недостатки переменного тока

  1. Важнейшим недостатком переменного тока является наличие реактивной мощности. Как известно, конденсатор и катушка индуктивности проявляют свои реактивные свойства только в цепях переменного тока. Проще говоря, катушка и конденсатор создают реактивное сопротивление переменному току, но не потребляю его.

    В результате этого из полной мощности, отдаваемой генератором переменного тока, часть мощности не затрачивается на выполнение полезной работы, а лишь бесполезно циркулирует межу генератором и нагрузкой. Такая мощность называется реактивной и является вредной. Поэтому ее стараются минимизировать.

Однако большинство нагрузок – двигатели, трансформаторы и сами провода являются индуктивными элементами.

А чем больше индуктивность, тем большую долю составляет реактивная мощность от полной и с этим нужно бороться.

  1. Второй главный недостаток переменного тока заключается в том, что он протекает не по всему сечению проводника, а вытесняется ближе к его поверхности. В результате снижается площадь, по которой протекает электрический ток, что в свою очередь приводит к увеличению сопротивления проводника и к росту потерь мощности в нем.

Чем выше частота, тем сильнее вытесняется ток к поверхности проводника и в конечном счете, тем выше потери мощности.

Преимущества постоянного тока

  1. Главное преимущество электрической энергии постоянного тока – это отсутствие реактивной мощности. А это значит, что вся мощность, выработанная генератором, потребляется нагрузкой за вычетом потерь в проводах.
  2. Постоянный ток в отличие от переменного протекает по всему сечению проводника.

Указанные два пункта приводят к тому, что если передавать одну и ту же мощность при равных напряжениях постоянным и переменным токами, то потери мощности электроэнергии постоянным током были бы почти в два раза меньше, чем при переменном токе.

К тому же, если рассматривать такие бытовые электронные устройства как ноутбуки, компьютеры, телевизоры и т. п., то все они имеют блоки питания, преобразующие переменное напряжение 220 В (230 В) в постоянное напряжение более низкой величины. А такие преобразования связаны с частичной потерей мощности.

Кроме того, как было сказано ранее, трехфазный асинхронный двигатель (АД) можно подключить напрямую к сети 380 В, что вполне оправдано в том случае, когда не требуется изменять режим работы двигателя.

Но если необходимо изменять частоту вращения его вала, то нужно на обмотки статора подавать напряжение, частота и амплитуда которого должны изменяться пропорционально, согласно закону Костенка. Для этого применяют трехфазные автономные инверторы (АИ), чаще всего инверторы напряжения.

Такие инверторы должны получать питание от источника постоянного напряжения.

Также следует заметить, что последним временем начали очень широко применяться солнечные батареи, которые вырабатывают постоянный ток. К тому же, значительно возросла мощность аккумуляторных батарей и повысилась емкость суперконденсаторов, которые также относятся к источникам постоянного тока и с каждым днем находят все большее практическое применение.

Выводы: постоянный или переменный ток

Несмотря на все преимущества постоянного тока, значительная сложность, вызванная преобразованием больших мощностей, главным образом сказывается сложность повышения и понижения постоянного напряжения, сводит на нет указанные выше преимущества.

Поэтому, до тех пор, пока не будут разработаны полупроводниковые ключи огромной мощности и соответствующие преобразователи на их основе, переменный ток остается вне конкуренции.

К тому же сейчас уже применяются четырехквадрантные преобразователи или активные выпрямители, позволяющие скомпенсировать реактивную составляющую нагрузки, что позволяет получить коэффициент мощности, равный почти единице. Благодаря чему исключается потребление реактивной мощности.

Как вы видите, однозначного ответа на вопрос, какой ток лучше: постоянный или переменный, не существует. Следует сравнивать все преимущества и недостатки для конкретного случая.

Источник: https://diodov.net/postoyannyj-i-peremennyj-tok-preimushhestva-i-nedostatki/

Что будет, если подать в электросеть постоянный ток

Война токов завершилась, и Тесла с Вестингаузом, похоже, победили. Сети постоянного тока сейчас используются кое-где на железной дороге, а также в виде свервысоковольтных линий передачи.

Подавляющее большинство энергосетей работают на переменном токе. Но давайте представим, что вместо переменного напряжения с действующим значением 220 вольт в ваш дом внезапно стали поступать те же 220 В, но постоянного тока.

Театр начинается с вешалки, а наш электрический цирк — с вводного щитка.

Автоматы

И сразу хорошие новости: защитные автоматы будут работать как положено. Автомат имеет два расцепителя: тепловой и электромагнитный. Тепловой служит для защиты от длительной перегрузки. Ток нагревает биметаллическую пластинку, она изгибается и размыкает цепь.

Электромагнитный элемент срабатывает от кратковременного импульса тока при коротком замыкании. Он представляет собой соленоид, который втягивает в себя сердечник и, опять же, разрывает цепь. Обе эти системы прекрасно работают на постоянном токе.
источник картинки: выключатель-автоматический.

рф

Дополнения от Bronx и AndrewN:

Магнитный расцепитель срабатывает по амплитудному значению тока, то есть в 1,4 раза больше действующего. На постоянном токе его ток срабатывания будет в 1,4 раза выше. Дугу постоянного тока сложнее погасить, так что при коротком замыкании увеличится время разрыва цепи и ускорится износ автомата. Существуют специальные автоматы, рассчитанные на работу с постоянным током.

УЗО

Помимо автоматов, в щитке есть устройство защитного отключения (УЗО). Его цель — обнаруживать утечку тока из сети на землю, например при касании человеком токоведущих частей. УЗО измеряет силу тока в двух проводниках, проходящих через него. Если в нагрузку втекает такой же ток, что и вытекает — всё в порядке, утечки нет. Если же токи не равны, УЗО бьёт тревогу и разрывает цепь.

Чувствительный элемент УЗО — дифференциальный трансформатор. У такого трансформатора две первичные обмотки, включенные в противоположных направлениях. Если токи равны, их магнитные поля компенсируют друг друга и на выходе сигнала нет. Если токи не скомпенсированы, на выходе сигнальной обмотки появляется напряжение, на которое реагирует схема УЗО.

На постоянном токе трансформатор работать не будет, и УЗО окажется бесполезным.

Счетчик

Неважно, какой у вас электросчетчик — старый механический или новый электронный — работать он не будет. Механический счетчик представляет собой электродвигатель, где ротором служит металлический диск, а статор содержит две обмотки. Одна обмотка включена последовательно с нагрузкой и измеряет ток, вторая включена параллельно и измеряет напряжение.

Таким образом, чем больше потребляемая мощность, тем быстрее крутится диск. Работа такого счетчика основана на явлении электромагнитной индукции, и при постоянном токе в обмотках диск останется неподвижен. Электронный счетчик устроен по-другому.

Он напрямую измеряет напряжение (через резистивный делитель) и ток (при помощи шунта или датчика Холла), оцифровывает их, а затем микропроцессор пересчитывает полученные данные в киловатт-часы. В принципе, ничто не мешает такой схеме работать с постоянным током, но во всех бытовых счетчиках постоянная составляющая программно отфильтровывается и на показания не влияет.

Счетчики постоянного тока существуют в природе, их ставят, например, на электровозы, но в квартирном щитке вы такой не найдёте. Ну и ладно, не хватало ещё платить за всё это безобразие! Идём дальше по цепи и смотрим, какие электроприборы могут нам встретиться.

Нагревательные приборы

Тут всё прекрасно. Электронагреватель — это чисто резистивная нагрузка, а тепловое действие тока не зависит от его формы и направления. Электроплиты, чайники, кипятильники, утюги и паяльники будут работать на постоянном токе точно так же, как и на переменном. Биметаллические терморегуляторы (как, например, в утюге) тоже будут функционировать правильно.

Лампы накаливания

Старая добрая лампочка Ильича на постоянном токе чувствует себя не хуже, чем на переменном. Даже лучше: не будет пульсаций света, лампа не будет гудеть. На переменном токе лампочка может гудеть из-за того, что спираль (особенно, если она провисла) работает как электромагнит, сжимаясь и растягиваясь дважды за период. При питании постоянным током этого неприятного явления не будет.

Однако если у вас установлены регуляторы яркости (диммеры), то они работать перестанут. Ключевым элементом диммера является тиристор — полупроводниковый прибор, который открывается и начинает пропускать ток в момент подачи управляющего импульса. Закрывается тиристор, когда ток через него прекращает течь. При питании тиристора переменным током он будет закрываться при каждом переходе тока через ноль.

Подавая управляющий импульс в разное время относительно этого перехода, можно менять время, в течение которого тиристор будет открыт, а значит, и мощность в нагрузке. Именно так и работает диммер. При питании постоянным током тиристор не сможет закрыться, и лампа всегда будет гореть на 100% мощности. А возможно, управляющая схема не сможет «поймать» переход сетевого напряжения через ноль и не подаст импульс для открытия тиристора.

Тогда лампа не загорится совсем. В любом случае, диммер будет бесполезен.

Люминесцентные лампы

Люминесцентную лампу нельзя включать напрямую в сеть, для нормальной работы ей нужен пуско-регулирующий аппарат (ПРА). В простейшем случае он состоит из трёх деталей: стартёра, дросселя и конденсатора. Последний нужен не самой лампе, а остальным потребителям в сети, так как он улучшает коэффициент мощности и фильтрует помехи, создаваемые лампой.

Стартёр — это неоновая лампочка, один из электродов которой при нагреве изгибается и касается второго электрода. Дроссель — большая катушка индуктивности, включенная последовательно с лампой: Штатно всё это работает так: при включении зажигается разряд в стартёре, его контакты нагреваются и замыкаются между собой.

Ток течёт через нити накала лампы, отчего те разогреваются и начинают испускать электроны. В это время стартёр остывает и размыкает цепь. Ток резко падает, и за счет самоиндукции на дросселе появляется импульс высокого напряжения. Этот импульс зажигает разряд в лампе, и дальше он горит самостоятельно.

Дроссель теперь ограничивает ток разряда, работая как добавочное сопротивление. Что же будет на постоянном токе? Стартёр сработает, лампа зажжётся как положено, но вот дальше всё пойдёт наперекосяк. В цепи постоянного тока у дросселя не будет индуктивного сопротивления (только активное сопротивление проводов, а оно мало), а значит, он больше не сможет ограничивать ток.

Чем выше ток разряда, тем сильнее ионизируется газ в лампе, сопротивление падает, и ток растёт ещё сильнее. Процесс будет развиваться лавинообразно и закончится взрывом лампы.

Лампы с электронным ПРА

Электромагнитные ПРА просты, но не лишены недостатков. У них низкий КПД, дроссель громоздкий и тяжелый, гудит и нагревается, лампа загорается с диким миганием, а потом мерцает с частотой 100 Гц. Всех этих недостатков лишен электронный пускорегулирующий аппарат (ЭПРА). Как он работает? Если посмотреть схемы различных ЭПРА, можно заметить общий принцип.

Напряжение сети выпрямляется (преобразуется в постоянное), затем генератор на транзисторах или микросхеме вырабатывает переменное напряжение высокой частоты (десятки кГц), которое питает лампу. В дорогих ЭПРА есть схемы разогрева нитей и плавного запуска, которые продлевают срок службы лампы.
источник картинки: aliexpress.

com Схожую схемотехнику имеют как блоки для линейных ламп, так и компактные «энергосберегайки», которые вкручиваются в обычный патрон. Поскольку на входе ЭПРА стоит выпрямитель, можно питать всю схему постоянным напряжением.

Светодиодные лампы

Светодиод требует для работы небольшое постоянное напряжение (около 3.5 В, обычно соединяют несколько диодов последовательно) и ограничитель тока. Схемы светодиодных ламп весьма разнообразны, от простых до довольно сложных. Самое простое — последовательно со светодиодами поставить гасящий резистор. На нём упадёт лишнее напряжение, он же будет ограничивать ток. Такая схема имеет чудовищно низкий КПД, поэтому на практике вместо резистора ставят гасящий конденсатор. Он также обладает сопротивлением (для переменного тока), но на нём не рассеивается тепловая мощность. По такой схеме собраны самые дешёвые лампы. Светодиоды в них мерцают с частотой 100 Гц. На постоянном токе такая лампа работать не будет, так как для постоянного тока конденсатор имеет бесконечное сопротивление.
источник картинки: bigclive.com

Источник: https://habr.com/post/372749/

Постоянный электрический ток: определение, механизм, характеристики

Определение 1

Постоянный ток – это упорядоченное движение заряженных частиц, движущихся в одном направлении.

По теории данные заряженные частицы относят к носителям тока. В проводниках и полупроводниках такими носителями являются электроны, в электролитах – заряженные ионы, в газах – электроны и ионы. Металлы характеризуются перемещением только электронов. Отсюда следует, что электрический ток в них – это движение электронов проводимости.

Результат прохождения электрического тока в металлах и электропроводящих растворах заметно отличается. Наличие химических процессов в металлах при протекании тока отсутствует. В электролитах под воздействием тока происходит выделение ионов вещества на электродах. Различие заключается в отличии носителей зарядов металла и электролита. В металлах – это свободные электроны, отделившиеся от атомов, в растворах – ионы, атомы или их группы с зарядами.

Необходимые условия существования электрического тока

Первое необходимое условие существования электрического тока любого вещества – наличие носителей заряда.

Для равновесного состояния зарядов необходимо равнение нулю разности потенциалов между любыми точками проводника. При нарушении данного условия, заряд не сможет переместиться. Отсюда следует, что второе необходимое условие существования электрического тока в проводнике – создание напряжения между некоторыми точками.

Определение 2

Упорядоченное движение свободных зарядов, возникающее в проводнике как результат воздействия электрического поля, называют током проводимости.

Такое движение возможно при перемещении в пространстве заряженного проводника или диэлектрика. Подобный электрический ток получил название конвекционного.

Механизм осуществления постоянного тока

Для постоянного прохождения тока в проводнике следует подсоединить к проводнику или их совокупности устройство, в котором постоянно происходит процесс разделения электрических зарядов для поддержания напряжения в цепи. Данный механизм получил название источника тока (генератора).

Силы, разделяющие заряды, называют сторонними. Они характеризуются неэлектрическим происхождением, действуют внутри источника. При разделении зарядов сторонние силы способны создать разность потенциалов между концами цепи.

Если электрический заряд перемещается по замкнутой цепи, то работа электростатических сил равняется нулю. Отсюда следует, что суммарная работа сил A, действующих на заряд, равна работе сторонних Ast. Определение физической величины, характеризующей источник тока, ЭДС источника ε запишется как:

ε=Aq (1), где значение q подразумевает положительный заряд. Его движение происходит по замкнутому контуру. ЭДС – это не сила. Единица измерения ε=В.

Природа сторонних сил различна. В гальваническом элементе они являются результатом электрохимических процессов. В машине с постоянным током такой силой является сила Лоренца.

Основные характеристики электрического тока

Условно принято считать направление тока за направление движения положительных частиц. Отсюда следует, что направление тока в металлах характеризуется противоположным направлением относительно направления движения частиц.

Электрический ток обладает силой тока.

Определение 3

Сила тока I – скалярная величина, равняется производной от заряда q по времени для тока, который проходит через поверхность S:

I=dqdt (2).

Ток может быть постоянным и переменным. При неизменной силе тока  с его направлением по времени ток называют постоянным, а выражение силы тока для него примет вид:

I=qt (3), где сила тока рассматривается в качестве заряда, проходящего через поверхность S в единицу времени.

По системе СИ основная единица измерения силы тока – Ампер (А).

1 A=1 Кл1 с.

Определение 4

Плотность – это векторная локальная характеристика. Вектор плотности тока j→способен показывать, каким образом распределяется ток по сечению S. Его направление идет в сторону, куда движутся положительные заряды.

Значение вектора плотности тока по модулю равно:

Источник: https://Zaochnik.com/spravochnik/fizika/postojannyj-elektricheskij-tok/postojannyj-elektricheskij-tok-opredelenie/

Чем отличается переменный ток от постоянного — объяснение простыми словами

В электричестве есть два рода тока – постоянный и переменный. Устройства также требуют для питания один или другой вид тока. От этого зависит возможность их работы, а иногда и целостность после подключения к неправильному питанию. Чем отличается переменный ток от постоянного мы расскажем в этой статье, дав краткий ответ наиболее простыми словами.

Определение

Электрическим током называется направленное движение заряженных частиц. Так звучит определение из учебника по физике. Простыми словами можно перевести так, что у его составляющих всегда есть какое-то направление. Собственно, это направление и является определяющем в сегодняшнем разговоре.

Переменный ток (Alternative Current – AC) отличается от постоянного (Direct Current – DC) тем, что у последнего электроны (носители заряда) всегда движутся в одном направлении. Соответственно отличием переменного тока является то, что направление движения и его сила зависят от времени. Например, в розетке направление и величина напряжения, соответственно и сила тока, изменяется по синусоидальному закону с частотой в 50 Гц (50 раз за секунду изменяется полярность между проводами).

Для так сказать чайников в электрике изобразим это на графике, где по вертикальной оси изображена полярность и напряжение, а по горизонтальной время:

Красной линией изображено постоянное напряжение, оно остаётся неизменным с течением времени, разве что изменяется при коммутации мощной нагрузки или КЗ. Зелеными волнами показан синусоидальный ток. Вы можете видеть, что он протекает то в одну, то в другую сторону, в отличие от постоянного тока, где электроны всегда протекают от минуса к плюсу, а направлением движения электрического тока выбран путь от плюса к минусу.

Если сказать по-простому, то разницей в этих двух примерах является то, что у постоянки всегда плюс и минус находятся на одних и тех же проводах. Если говорить о переменном, то в электроснабжении используют понятия фазы и нуля. Если рассматривать по аналогии с постоянкой, то фаза и ноль являются плюсом и минусом, только полярность меняется 50 раз в секунду (в США и ряде других стран 60 раз в секунду, а в самолётах более 400 раз).

Происхождение

Разница между AC и DC заключается в их происхождении. Постоянный ток можно получить из гальванических элементов, например, батареек и аккумуляторов.

Также его можно получить с помощью динамомашины – это устаревшее название генератора постоянного тока. Кстати с их помощью генерировалась энергия для первых электросетей. Мы об этом говорили в статье об открытиях Николы Тесла, в заметках о войне идей между Теслой и Эдисоном. Позже так называли небольшие генераторы для питания велосипедных фар.

Переменный ток добывают также с помощью генераторов, в наше время в основном трёхфазных.

Также и то и другое напряжение можно получить с помощью полупроводниковых преобразователей и выпрямителей. Так вы можете выпрямить переменный ток или получить его же, преобразовав постоянный.

Формулы для расчета постоянного тока

Разницей между переменкой и постоянкой являются и формулы для расчетов процессов, происходящих в цепи. Так сопротивление рассчитываются по Закону Ома для участка цепи или для полной цепи:

E=I/R

E=I/(R+r)

Мощность также просто рассчитываются:

P=UI

Формулы для расчета переменного тока

В расчётах цепей переменного тока разница в формулах обусловлена отличием процессов, протекающих в емкостях и индуктивностях. Тогда формула закона Ома будет для активного сопротивления:

Для ёмкости:

Для индуктивности:

Здесь 1/wC и wL – емкостное и индуктивное реактивные сопротивления, а w – угловая частота, она равна 2пиF.

Для цепи с ёмкостью и индуктивностью:

wL-1/wC – это реактивное сопротивление, оно обозначается как Z.

Источник: https://samelectrik.ru/chem-otlichaetsya-peremennyj-tok-ot-postoyannogo.html

Понравилась статья? Поделиться с друзьями:
ЭлектроМастер
Как устроен лазерный проектор

Закрыть