Что такое диэлектрик примеры

Диэлектрик — что такое? Свойства диэлектриков

что такое диэлектрик примеры

Диэлектрик — это материал или вещество, которое практически не пропускает электрический ток. Такая проводимость получается вследствие небольшого количества электронов и ионов. Данные частицы образуются в не проводящем электрический ток материале только при достижении высоких температурных свойств. О том, что такое диэлектрик и пойдёт речь в этой статье.

Описание

Каждый электронный или радиотехнический проводник, полупроводник или заряженный диэлектрик пропускает через себя электрический ток, но особенность диэлектрика в том, что в нем даже при высоком напряжении свыше 550 В будет протекать ток малой величины. Электрический ток в диэлектрике — это движение заряженных частиц в определённом направлении (может быть положительным и отрицательным).

Виды токов

В основе электропроводимости диэлектриков лежат:

  • Токи абсорбционные – ток, который протекает в диэлектрике при постоянном токе до тех пор, пока не достигнет состояния равновесия, изменяя направление при включении и подаче на него напряжения и при отключении. При переменном токе напряжённость в диэлектрике будет присутствовать в нём всё время, пока находится в действии электрического поля.
  • Электронная электропроводность – перемещение электронов под действием поля.
  • Ионная электропроводность – представляет собой движение ионов. Находится в растворах электролитов – соли, кислоты, щёлочь, а так же во многих диэлектриках.
  • Молионная электропроводность – движение заряженных частиц, называемых молионами. Находится в коллоидных системах, эмульсиях и суспензиях. Явление движения молионов в электрическом поле называется электрофорезом.

Электроизоляционные материалы классифицируют по агрегатному состоянию и химической природе. Первые делятся на твёрдые, жидкостные, газообразные и затвердевающие. По химической природе делятся на органику, неорганику и элементоорганические материалы.

Электропроводимость диэлектриков по агрегатному состоянию:

  • Электропроводимость газов. У газообразных веществ достаточно малая проводимость тока. Он может возникать при наличии свободных заряженных частиц, что появляется из-за воздействия внешних и внутренних, электронных и ионных факторов: излучение рентгена и радиоактивного вида, соударение молекул и заряженных частиц, тепловые факторы.
  • Электропроводимость жидкого диэлектрика. Факторы зависимости: структура молекулы, температура, примеси, присутствие крупных зарядов электронов и ионов. Электропроводимость жидких диэлектриков во многом зависит от наличия влаги и примесей. Проводимость электричества полярных веществ создаётся ещё при помощи жидкости с диссоциированными ионами. При сравнении полярных и неполярных жидкостей, явное преимущество в проводимости имеют первые. Если очистить жидкость от примесей, то это поспособствует уменьшению её проводимых свойств. При росте проводимости жидкого вещества и его температуры возникает уменьшение её вязкости, приводящее к увеличению подвижности ионов.
  • Твёрдые диэлектрики. Их электропроводимость обуславливается как перемещение заряженных частиц диэлектрика и примесей. В сильных полях электрического тока выявляется электропроводимость.

Физические свойства диэлектриков

При удельном сопротивлении материала равном меньше 10-5 Ом*м их можно отнести к проводникам. Если больше 108 Ом*м — к диэлектрикам. Возможны случаи, когда удельное сопротивление будет в разы больше сопротивления проводника. В интервале 10-5-108 Ом*м находится полупроводник. Металлический материал — отличный проводник электрического тока.

Из всей таблицы Менделеева только 25 элементов относятся к неметаллам, причём 12 из них, возможно, будут со свойствами полупроводника.

Но, разумеется, кроме веществ таблицы, существует ещё множество сплавов, композиций или химических соединений со свойством проводника, полупроводника или диэлектрика.

Исходя из этого, трудно провести определённую грань значений различных веществ с их сопротивлениями. Для примера, при пониженном температурном факторе полупроводник станет вести себя подобно диэлектрику.

Применение

Использование не проводящих электрический ток материалов очень обширно, ведь это один из популярно используемых классов электротехнических компонентов. Стало достаточно ясно, что их можно применять благодаря свойствам в активном и пассивном виде.

В пассивном виде свойства диэлектриков используют для применения в электроизоляционном материале.

В активном виде они используются в сегнетоэлектрике, а также в материалах для излучателей лазерной техники.

Основные диэлектрики

К часто встречающимся видам относятся:

  • Стекло.
  • Резина.
  • Нефть.
  • Асфальт.
  • Фарфор.
  • Кварц.
  • Воздух.
  • Алмаз.
  • Чистая вода.
  • Пластмасса.

Что такое диэлектрик жидкий?

Поляризация данного вида происходит в поле электрического тока. Жидкостные токонепроводящие вещества используются в технике для заливки или пропитки материалов. Есть 3 класса жидких диэлектриков:

Нефтяные масла – являются слабовязкими и в основном неполярными. Их часто используют в высоковольтных аппаратурах: масло трансформаторное, высоковольтные воды. Масло трансформаторное — это неполярный диэлектрик.

Кабельное масло нашло применение в пропитке изоляционно-бумажных проводов с напряжением на них до 40 кВ, а также покрытий на основе металла с током больше 120 кВ. Масло трансформаторное по сравнению с конденсаторным имеет более чистую структуру.

Данный вид диэлектрика получил широкое распространение в производстве, несмотря на большую себестоимость по сравнению с аналоговыми веществами и материалами.

Что такое диэлектрик синтетический? В настоящее время практически везде он запрещён из-за высокой токсичности, так как производится на основе хлорированного углерода.

А жидкий диэлектрик, в основе которого кремний органический, является безопасным и экологически чистым. Данный вид не вызывает металлической ржавчины и имеет свойства малой гигроскопичности.

Существует разжиженный диэлектрик, содержащий фторорганическое соединение, которое особо популярно из-за своей негорючести, термических свойств и окислительной стабильности.

И последний вид, это растительные масла. Они являются слабо полярными диэлектриками, к ним относятся льняное, касторовое, тунговое, конопляное. Касторовое масло является сильно нагреваемым и применяется в бумажных конденсаторах. Остальные масла — испаряемые. Выпаривание в них обуславливается не естественным испарением, а химической реакцией под названием полимеризация. Активно применяется в эмалях и красках.

Заключение

В статье было подробно рассмотрено, что такое диэлектрик. Были упомянуты различные виды и их свойства. Конечно, чтобы понять всю тонкость их характеристик, придётся более углубленно изучить раздел физики о них.

Источник: https://FB.ru/article/327923/dielektrik---chto-takoe-svoystva-dielektrikov

Что Такое диэлектрик- Значение Слова диэлектрик

что такое диэлектрик примеры

падежед. ч.мн. ч.
Им. диэле́ктрик диэле́ктрики
Р. диэле́ктрика диэле́ктриков
Д. диэле́ктрику диэле́ктрикам
В. диэле́ктрик диэле́ктрики
Тв. диэле́ктриком диэле́ктриками
Пр. диэле́ктрике диэле́ктриках

ди-э-ле́к-трик

Существительное, неодушевлённое, мужской род, 2-е склонение (тип склонения 3a по классификации А. А. Зализняка).

Префиксоид: ди-; корень: -электр-; суффикс: -ик [Тихонов, 1996].

Значение

  1. физ. материал, обладающий малой электропроводностью; изолятор [1] ◆ Эффект-то существовал, но использовать его на практике было невозможно: чтобы диэлектрик в диэлектрике как следует раскрутился, нужно подать огромное напряжение — до 100 киловольт и более, при котором у диэлектрика начинают проявляться некоторые свойства проводника. Борис Руденко, «Водяной монолит и каменная река», 2009 // «Наука и жизнь» (цитата из )

Родственные слова

диэлектрик

Существительное.

Корень: .

Библиография

В частности, следует уточнить сведения о:
  • морфологии
  • произношении
  • этимологии

(См. Общепринятые правила).

диэлектрик

Существительное.

Корень: .

Диэлектрики — Химия

что такое диэлектрик примеры

  • Проводниками называются вещества, по которым могут свободно перемещаться электрические заряды. Термин «проводник» является переводом с английского слова сonductor, который ввел Ж.Т.Дезагюлье в 1739 г. для обозначения «тел, действующих как каналы для транспорта электрической силы».

Проводниками являются металлы, электролиты (растворы, проводящие ток) плазма.

В металлах носителями зарядов являются свободные электроны, в электролитах – положительные и отрицательные ионы, в плазме – свободные электроны и ионы.

У большинства металлов практически каждый атом теряет электрон и становится положительным ионом. Например, у меди в 1 м3 свободных электронов 1029. Свободные электроны в металлах находятся в непрерывном беспорядочном движении. Скорость такого движения примерно равна 105 м/с (100 км/с).

Не смотря на наличие внутри тела зарядов (свободных электронов и ионов), электрического поля внутри проводника нет. Отдельные заряженные частицы создают микроскопические поля. Но эти поля внутри проводника в среднем компенсируют друг друга (рис. 1).

  • Если бы это условие не выполнялось, то свободные заряды, под действием кулоновских сил, пришли бы в движение. Они двигались бы до тех пор, пока действующая на них сила не обратилась бы в нуль.

Поместим незаряженный проводник, например, металл, в однородное электростатическое поле с напряженностью (~vec E_0). На свободные электроны начинают действовать электрические силы (vec F), под действием которых электроны приходят в движение (рис. 2). Продолжая беспорядочное движение, электроны начинают смещаться в сторону действия силы (скорость смещения порядка 0,1 мм/с).

На одной поверхности проводника образуется область с недостатком электронов, на противоположной – с избытком электронов. Это приводит к появлению еще одного электрического поля с напряженностью ( vec E_{np}) (рис. 3).

Общая напряженность ( vec E) электрического будет равна

( vec E = vec E_0 + vec E_{np}, ;; E = E_0 — E_{np}.)

Электрическая сила (F), действующая на свободные электроны с зарядом q:

(F = q cdot E.)

По мере смещения электронов, заряд на поверхности увеличивается. Это приводит к увеличению напряженности (E_{np}) и уменьшению общей напряженности (E) (т.к. (E = E_0 — E_{np})). И в какой-то момент напряженность (E_{np}) становится равной напряженности внешнего поля (E_0), т.е. (E_{np} = E_0), и общая напряженность поля внутри проводника становится равной нулю.

Электрическая сила (F) в этот момент также становится равной нулю, электроны перестают смещаться, но беспорядочное движение не прекращается. На поверхности проводника остаются электрические заряды.

Явление возникновения электрических зарядов на поверхности проводника под воздействием электрического поля называется электростатической индукцией, а возникшие заряды – индуцированными.

  • Доля электронов, которые оказались на поверхности, очень мала. Например, если к медной пластинке толщиной в 1 см приложить напряжение в 1000 В, то эта доля составляет 10–10 % от всех свободных электронов.

Каким бы способом ни был заряжен проводник, внутри него поле отсутствует. Это позволяет использовать заземленные полые проводники со сплошными или сетчатыми стенками для электростатической защиты от внешних электростатических полей. Так, например, для защиты военных складов, служащих для хранения взрывчатых веществ, от удара молнии их окружают заземленной проволочной сетью.

  • Впервые явление электростатической защиты было обнаружено М.Фарадеем в 1836 году. Он провел интересный опыт. Большая деревянная клетка была оклеена тонкими листами олова, изолирована от земли и сильно заряжена. В клетке находился сам Фарадей с очень чувствительным электроскопом. Несмотря на то, что при приближении к клетке тел, соединенных с землей, проскакивали искры, внутри клетки электрическое поле не обнаруживалось.

Диэлектрики в электростатическом поле

  • Диэлектрики (изоляторы) — это вещества, в которых практически отсутствуют свободные носители зарядов. Термин «диэлектрик» происходит от греческого слова dia — через, сквозь и английского слова electric — электрический. Этот термин ввел М. Фарадей в 1838 г. для обозначения веществ, в которые проникает электрическое поле.

Резкой границы между проводниками и диэлектриками нет, так как все вещества в той или иной степени способны проводить электрический ток.

Но если в веществе свободных зарядов в 1015-1020 раз меньше, чем в металлах, то в таких случаях слабой проводимостью вещества можно пренебречь и считать его идеальным диэлектриком.

Почти все заряженные частицы внутри диэлектрика связаны между собой и не способны передвигаться по объему тела. Они могут только незначительно смещаться относительно своих равновесных положений.

Диэлектриками являются все неионизированные газы, многие чистые жидкости (дистиллированная вода, масла, бензины) и твердые тела (пластмассы, стекла, керамика, кристаллы солей, сухая древесина).

Существуют полярные и неполярные диэлектрики.

Неполярный диэлектрик

Рассмотрим схему простейшего атома – атома водорода (рис. 4).

Положительный заряд атома, заряд его ядра, сосредоточен в центре атома. Вокруг ядра движется электрон со скоростью порядка 106 м/с и уже за 10–9 с успевает совершить миллион оборотов.

Поэтому орбиту электрона можно рассматривать как электронное облако, расположенное симметрично относительно ядра.

Следовательно, даже за очень малый промежуток времени центр распределения отрицательного заряда приходится на середину атома, т.е. совпадает с положительно заряженным ядром.

  • Диэлектрики, состоящие из атомов и молекул, у которых центры распределения положительных и отрицательных зарядов совпадают, называются неполярными.

Примерами таких веществ являются одноатомные благородные (инертные) газы; газы, состоящие из симметричных двухатомных молекул (кислород, водород, азот); различные органические жидкости (масла, бензины); некоторые твердые тела (пластмассы).

Поместим такой диэлектрик в однородное электростатическое поле с напряженностью (vec E_0) .

На отрицательно и положительно заряженные частицы начинают действовать силы, направленные в противоположные стороны (рис. 5).

В результате молекула растягивается и происходит незначительное смещение центров положительного и отрицательного зарядов.

Образуется система двух точечных зарядов q, равных по модулю и противоположных по знаку, находящихся на некотором расстоянии l друг от друга (рис. 6). Такую нейтральную в целом систему зарядов называют электрическим диполем.

Электрический диполь создает электрическое поле напряженностью Едi, которая направлена против напряженности внешнего поля Е0.

В диэлектрике, состоящем из множества таких диполей, с напряженность Едi, общая напряженность Е становится меньше напряженности внешнего поля Е0 (рис. 7).

Вследствие смещения зарядов на одной поверхности диэлектрика появляются преимущественно отрицательные заряды диполей, а на другой – положительные (рис. 8). Внутри любого объема диэлектрика суммарный электрический заряд молекул в этом объеме равен нулю.

  • Заряды, которые образуются на поверхности диэлектрика, помещенного в электрическое поле, называются связанными.
  • Смещение связанных положительных и отрицательных зарядов диэлектрика в противоположные стороны под действием приложенного внешнего электростатического поля называют поляризацией.
  • Поляризация диэлектрика, в результате которой происходит смещение электронных оболочек, называется электронной поляризацией.

Электронная поляризация происходит в атомах любого диэлектрика, помещенного в электрическое поле.

Полярный диэлектрик

Многие диэлектрики (H2O, H2S, NO2) образованы из молекул, каждая из которых является электрическим диполем и в отсутствии внешнего электрического поля. Такие молекулы и образованные ими диэлектрики называются полярными.

Например, молекула поваренной соли NaCl. При образовании молекулы единственный валентный электрон натрия захватывается хлором. Оба нейтральных атома превращаются в систему из двух ионов с зарядами противоположных знаков. Центр положительного заряда молекулы приходится на ион натрия (Na), а отрицательного – на ион хлора (Cl) (рис. 9).

При отсутствии внешнего поля молекулярные диполи из-за теплового движения расположены хаотично, поэтому их суммарный дипольный момент равен нулю.

Источник: https://himya.ru/dielektriki.html

Электроизоляционные материалы

статьи

Электроизоляционные материалы, изоляторы – газообразные, жидкие или твердые материалы, которые не проводят электрический ток.

Коронный разряд

Одним из наиболее известных и распространенных изоляторов является воздух при атмосферном давлении и нормальной температуре. Для низких напряжений удельное электрическое сопротивление такого воздуха составляет ок. 1018 ОмЧсм. Когда напряженность электрического поля поперек однородной воздушной щели достигает 30 кВ/см, проводимость увеличивается, так как начинается фотоионизация воздуха и в конце концов между электродами проскакивает искра.

Если геометрия электродов разнородна, как, например, в случае острия и плоскости или провода линии электропередачи над поверхностью земли, вокруг острия или провода при достаточно большой напряженности электрического поля возникает светящаяся область ионизованного воздуха, называемая коронным разрядом.

Ток коронного разряда возрастает с увеличением напряжения, и в конце концов возникает искра или дуга в зависимости от мощности источника и сопротивления внешней цепи.

Электрическая прочность

Повышение давления воздуха приводит к увеличению напряжения коронного разряда и напряженности электрического поля, при которой происходит пробой для рассматриваемой системы электродов. Согласно закону Пашена, в однородном электрическом поле напряжение пробоя не изменится, если при уменьшении межэлектродного зазора во столько же раз увеличить давление газа в зазоре.

Такие распространенные газы, как азот, кислород и двуокись углерода, по своей изолирующей способности близки к воздуху при атмосферном давлении. Некоторые пары, особенно те, что содержат серу, хлор или фтор, такие, как гексафторид серы (SF6), четыреххлористый углерод (CCl4) и фреон-12 (CCl2F2), имеют втрое большую электрическую прочность, чем воздух при том же давлении.

Влияние давления на напряжение пробоя для некоторых материалов показано на рисунке.

Электроизолирующие свойства газов оказываются наихудшими при давлениях от 1 до 0,01 кПа. Прохождение тока через газ при таких давлениях сопровождается ярким свечением (например, в ртутных или неоновых лампах). Это явление называется тлеющим разрядом.

Жидкие диэлектрики

Органические соединения, в частности углеводороды, широко используются в качестве жидких диэлектриков. Для углеводородов характерны низкая диэлектрическая проницаемость (от 2 до 4) и умеренно высокое удельное электрическое сопротивление (ок. 1012 ОмЧсм).

Поскольку углеводороды не содержат кислорода или азота, они являются химически стабильными и поэтому подходят для использования в сильных электрических полях, в которых процессы ионизации усиливают химическую нестабильность. Примерами жидких диэлектриков могут служить циклические углеводороды, такие, как бензол (C6H6), или ациклические соединения типа гексана [CH3 (CH2)4CH3].

Большинство углеводородов встречаются в виде смесей; химический состав и строение входящих в них компонентов точно не известны. К ним относятся, в порядке возрастания вязкости, петролейный эфир, парафиновое масло, трансформаторные масла, парафин и различные воски.

Некоторые галогенопроизводные продукты, такие, как хлороформ (CHCl3) и четыреххлористый углерод (CCl4), являются диэлектриками. К жидким неорганическим диэлектрикам относятся такие сжиженные газы, как двуокись углерода и хлор.

Важным преимуществом жидких диэлектриков является их способность к восстановлению своих свойств после искрового пробоя и способность проводить тепло, что важно для трансформаторов.

Твердые диэлектрики

К типичным твердым электроизоляционным материалам относятся фарфор, стекло, кварц, натуральная и синтетическая резина и пластики. Тонкие слои твердых изоляторов могут иметь очень высокие значения напряжения пробоя и удельного электрического сопротивления, что видно из приводимой ниже таблицы.

Повышение приложенной разности потенциалов к рассматриваемому образцу твердого или жидкого диэлектрика увеличивает ток через него. Это увеличение приводит к отрыву электронов и образованию пространственного положительного заряда вблизи катода. Электрический пробой является результатом искажения электрического поля внутри изолятора.

Как твердые, так и жидкие диэлектрики подвержены поляризации, т.е. их диэлектрическая постоянная больше единицы. Поляризация приводит к появлению диэлектрических потерь при приложении переменных электрических полей.

Некоторые материалы, такие, как кварц, полиэтилен и некоторые газы, имеют очень низкие диэлектрические потери даже в высокочастотных электрических полях.

Таблица: Свойства твердых диэлектриков
СВОЙСТВА ТВЕРДЫХ ДИЭЛЕКТРИКОВ
Материал Электрическая прочность, кВ/см Диэлектрическая проницаемость Удельное электрическое сопротивление, 1014 ОмЧсм
Слюда 280 5,0–7,0 2000
Стекло (разное) 200–700 3,0–12,0 10–6 ё104
Метилметакрилат (люсит) 650 3,3–4,5 1
Фарфор (неглазурованный) 130 5,0–7,0 3
Эбонит 650 2,0–3,5 104

Вакуум как изолятор

Когда металлические электроды помещены в газ с давлением меньше 10-2 Па, молекул газа недостаточно для образования заметного тока в межэлектродном зазоре, и в этом случае говорят об изоляции высоким вакуумом. Ионизация молекул остаточного газа при соударении с электронами или положительно заряженными ионами, вылетающими с электродов, при таких давлениях происходит редко.

В условиях высокого вакуума при постоянном напряжении ниже 20 кВ на поверхности катода пробой может не наступать при напряженности поля до 5 МВ/см, а на аноде – при напряженности в несколько раз большей. Однако при более высоких напряжениях катодный градиент, при котором наступает пробой, быстро уменьшается.

Пробой между металлическими электродами в вакууме происходит из-за обмена заряженными частицами между катодом и анодом. Электрон, вылетающий из катода, ускоряется электрическим полем и ударяет в анод, выбивая положительные ионы и фотоны. Положительные ионы и часть фотонов попадают на катод; ионы ускоряются электрическим полем и вызывают эмиссию вторичных электронов.

При некотором критическом значении напряжения и градиента электрического поля для данного материала электродов этот процесс становится неустойчивым, и происходит искровой пробой.

Изоляция высоким вакуумом особенно широко применяется в электронике как для ускорения электронов низкой энергии в обычных электровакуумных приборах, так и для высоковольтных приложений в рентгеновских приборах и ускорителях для ядерных исследований.

Конденсаторы

Диэлектрики находят широкое применение в конденсаторах. Конденсаторы имеют многообразные применения, среди которых накопление электрического заряда, нейтрализация эффектов индуктивности в цепях переменного тока и получение импульсов тока для различных приложений.

Емкость конденсатора часто может быть рассчитана исходя из конфигурации системы или измерена путем определения величины заряда на одной из обкладок конденсатора при приложении заданного напряжения между обкладками.

Энергия заряженного конденсатора равна 1/2 CE2 и выражается в микроджоулях (мкДж), если С выражено в микрофарадах (мкФ), а Е – в вольтах (В).

Низковольтные конденсаторы

Для слаботочных и низковольтных приложений, таких, как радио- и телефонные сети и низковольтные выпрямители, конденсаторы изготавливаются обычно из слоев алюминиевой или другой металлической фольги, разделенных диэлектриком из одного или нескольких слоев пропарафиненной бумаги.

Очень компактный низковольтный конденсатор – т.н. электролитический – изготавливается нанесением (посредством электролитического осаждения) тонкой изолирующей оксидной пленки на поверхность металлической фольги; при этом достигается достаточно высокая емкость на единицу площади поверхности конденсатора.

Полученный материал наматывается в виде обмотки компактных размеров.

Высоковольтные конденсаторы

В конденсаторах для высоких напряжений, которые используются в радиопередающих устройствах, в качестве изолятора часто применяется слюда.

Конденсаторы для очень высоких напряжений обычно изготавливаются из металлической фольги с большим числом слоев диэлектрической бумаги, помещенных в заполненный маслом контейнер, или из металлических пластин, разделенных газообразным или жидким диэлектриком.

В таких конструкциях для высокочастотных конденсаторов, в которых важно иметь низкие диэлектрические потери, в качестве диэлектрика используется и вакуум.

Источник: https://www.krugosvet.ru/enc/nauka_i_tehnika/tehnologiya_i_promyshlennost/ELEKTROIZOLYATSIONNIE_MATERIALI.html

Что такое проводники, полупроводники и диэлектрики

В электричестве выделяют три основных группы материалов – это проводники, полупроводники и диэлектрики. Основным их отличием является возможность проводить ток. В этой статье мы рассмотрим, чем отличаются эти виды материалов и как они ведут себя в электрическом поле.

Что такое проводник

Вещество, в котором присутствуют свободные носители зарядов, называют проводником. Движение свободных носителей называют тепловым. Основной характеристикой проводника является его сопротивление (R) или проводимость (G) – величина обратная сопротивлению.

G=1/R

Говоря простыми словами – проводник проводит ток.

https://www.youtube.com/watch?v=BcN-08nLOXs

К таким веществам можно отнести металлы, но если говорить о неметаллах то, например, углерод – отличный проводник, нашел применение в скользящих контактах, например, щетки электродвигателя. Влажная почва, растворы солей и кислот в воде, тело человека – тоже проводит ток, но их электропроводность зачастую меньше, чем у меди или алюминия, например.

Металлы являются отличными проводниками, как раз таки благодаря большому числу свободных носителей зарядов в их структуре. Под воздействием электрического поля заряды начинают перемещаться, а также перераспределяться, наблюдается явление электростатической индукции.

Что такое диэлектрик

Диэлектриками называют вещества, которые не проводят ток, или проводят, но очень плохо. В них нет свободных носителей зарядов, потому что связь частиц атома достаточно сильная, для образования свободных носителей, поэтому под воздействием электрического поля тока в диэлектрике не возникает.

Газ, стекло, керамика, фарфор, некоторые смолы, текстолит, карболит, дистиллированная вода, сухая древесина, резина – являются диэлектриками и не проводят электрический ток. В быту диэлектрики встречаются повсеместно, например, из них делаются корпуса электроприборов, электрические выключатели, корпуса вилок, розеток и прочее. В линиях электропередач изоляторы выполняются из диэлектриков.

Однако, при наличии определенных факторов, например повышенный уровень влажности, напряженность электрического поля выше допустимого значения и прочее – приводят к тому, что материал начинает терять свои диэлектрические функции и становится проводником. Иногда вы можете слышать фразы типа «пробой изолятора» — это и есть описанное выше явление.

Если сказать кратко, то основными свойствами диэлектрика в сфере электричества являются электроизоляционные. Именно способность препятствовать протеканию тока защищает человека от электротравматизма и прочих неприятностей. Основной характеристикой диэлектрика является электрическая прочность – величина равная напряжению его пробоя.

Что такое полупроводник

Полупроводник проводит электрический ток, но не так как металлы, а при соблюдении определенных условий – сообщении веществу энергии в нужных количествах.

Это связано с тем, что свободных носителей (дырок и электронов) зарядов слишком мало или их вовсе нет, но если приложить какое-то количество энергии – они появятся. Энергия может быть различных форм – электрической, тепловой.

Также свободные дырки и электроны в полупроводнике могут возникать под воздействием излучений, например в УФ-спектре.

Где применяются полупроводники? Из них изготавливают транзисторы, тиристоры, диоды, микросхемы, светодиоды и прочее. К таким материалам относят кремний, германий, смеси разных материалов, например арсенид-галия, селен, мышьяк.

Чтобы понять, почему полупроводник проводит электрический ток, но не так как металлы, нужно рассматривать эти материалы с точки зрения зонной теории.

Зонная теория

Зонная теория описывает наличие или отсутствие свободных носителей зарядов, относительно определенных энергетических слоев. Энергетическим уровнем или слоем называют количество энергии электронов (ядер атомов, молекул – простых частиц), их измеряют в величине Электронвольты (ЭВ).

На изображении ниже показаны три вида материалов с их энергетическими уровнями:

Обратите внимание, что у проводника энергетические уровни от валентной зоны до зоны проводимости объединены в неразрывную диаграмму. Зона проводимости и валентная зоны накладываются друг на друга, это называется зоной перекрытия. В зависимости от наличия электрического поля (напряжения), температуры и прочих факторов количество электронов может изменяться. Благодаря вышеописанному, электроны могут передвигаться в проводниках, даже если сообщить им какое-то минимальное количество энергии.

У полупроводника между зоной валентности и зоной проводимости присутствует определенная запрещенная. Ширина запрещенной зоны описывает, какое количество энергии нужно сообщить полупроводнику, чтобы начал протекать ток.

У диэлектрика диаграмма похожа на ту, которая описывает полупроводники, однако отличие лишь в ширине запрещенной зоны – она здесь во много раз большая. Различия обусловлены внутренним строением и вещества.

Мы рассмотрели основные три типа материалов и привели их примеры и особенности. Главным их отличием является способность проводить ток.

Поэтому каждый из них нашел свою сферу применения: проводники используются для передачи электроэнергии, диэлектрики – для изоляции токоведущих частей, полупроводники – для электроники.

Надеемся, предоставленная информация помогла вам понять, что собой представляют проводники, полупроводники и диэлектрики в электрическом поле, а также в чем их отличие между собой.

Напоследок рекомендуем просмотреть полезное видео по теме:

Наверняка вы не знаете:

Источник: https://samelectrik.ru/chto-takoe-provodniki-poluprovodniki-i-dielektriki.html

Проводники и диэлектрики в электрическом поле

Одним из основных понятий электрики является электрическое поле. Благодаря ему, все электрические заряды способны взаимодействовать между собой. Оно образовано суммой электрических полей, существующих в каждом заряде. Все тела, помещенные в эту среду, разделяются, как проводники и диэлектрики в электрическом поле, выполняющие собственные функции, в зависимости от их физических свойств.

Проводники в электрическом поле

Проводники свободно пропускают через себя электрозаряды, поскольку содержат в себе заряженные свободные носители. Классические проводники представлены различными видами металлов и электролитами.

Когда проводник попадает в электрическое поле, в нем возникает движение свободных зарядов.

Оно прекращается при нулевом значении напряженности. Разноименные заряды могут разделяться и тогда наблюдается явление электростатической индукции. В этом случае прекращается перемещение свободных зарядов вдоль поверхности проводника.

Когда распределение достигает определенного значения, вектор напряженности в поле становится перпендикулярным проводнику.

Все эти свойства проводников, на которые воздействует поле используются на практике в различных приборах и устройствах.

Диэлектрики

Тела, которые состоят из веществ, не проводящих электроразряды, получили название диэлектриков. Это связано с тем, что в них отсутствуют свободные заряды. В электротехнике такие тела играют роль изоляторов.

При помещении диэлектрика в электрическое поле, в нем не будет происходить перераспределения зарядов. Сам диэлектрик будет нейтральным на обоих концах. Тем не менее, незаряженное диэлектрическое тело может притягиваться к заряженному объекту, поскольку поле создает поляризацию диэлектрика. При этом, разноименные заряды, связанные между собой и находящиеся в составе молекул и атомов, смещаются в противоположные стороны.

Диэлектрики могут быть полярными и неполярными. В первом случае распределение положительных и отрицательных зарядов в молекулах не совпадает. Эти нейтральные системы называются электрическими диполями.

В неполярных диэлектриках центры положительных и отрицательных зарядов совпадают. Их типичными представителями являются водород, кислород, инертные газы.

Следует отметить, что разделение веществ на проводники и диэлектрики достаточно условно, поскольку свободные заряды в различных количествах содержатся в каждом диэлектрике.

Источник: https://electric-220.ru/news/provodniki_i_diehlektriki_v_ehlektricheskom_pole/2014-03-29-564

Диэлектрики: что это такое, примеры

Определение 1

Диэлектриками называют вещества, не обладающие способностью проводить электрический ток.

Стоит отметить, что данное определение лишь приблизительно выражает физический смысл приведенного понятия.

Абсолютных изоляторов, то есть веществ, которые совсем не проводят ток, в природе не существует. Диэлектрики по сравнению с проводниками в 1015−1020 раз хуже проводят ток. Данный факт основывается на том, что в диэлектриках отсутствуют свободные заряды.

Что такое диэлектрики и их примеры

Определение 2

Если диэлектрик поместить в электрическое поле, то, как диэлектрик, так и само поле значительно изменятся. В диэлектриках, в которых до контакта с полем не было заряда, возникают электрические заряды. Это явление объясняется процессом поляризации вещества, другими словами, в поле диэлектрик обретает электрические полюсы. Возникающие при этом заряды называются поляризационными.

Разделить такие заряды невозможно, чем они существенно отличаются от индукционных зарядов в проводниках. Данное отличие основывается на том факте, что в металлах присутствуют электроны, имеющие возможность перемещаться на относительно большие расстояния. В диэлектриках положительные и отрицательные заряды связаны между собой, и их перемещение ограничено пределами одной молекулы, что является крайне малым расстоянием.

Диэлектрики состоят либо из нейтральных молекул, либо из закрепленных в положении равновесия, к примеру, в узлах кристаллической решетки заряженных ионов. Ионные кристаллические решетки могут быть разбиты на, в целом, нейтральные «элементарные ячейки».

Действие электрического поля на заряды, принадлежащие диэлектрику, провоцирует лишь легкое смещение относительно изначального положения, тогда как заряды проводников, испытывающие такое же влияние, срываются с места. В условиях отсутствующего электрического поля диэлектрик может быть условно представлен в виде совокупности молекул, в каждой из которых положительные и отрицательные заряды равные по величине распределены по всему объему вещества.

Определение 3

В процессе поляризации заряды каждой отдельной молекулы диэлектрика смещаются в противоположные ее стороны. Соответственно, одна часть молекулы становиться положительно заряженной, а другой — отрицательно, что, в общем, дает возможность заявить: молекула превращается в электрический диполь.

Равнодействующая электрических сил, в однородном поле оказывающих влияние на нейтральную молекулу диэлектрика, эквивалентна нулю. Этот факт основывается на том, что центр тяжести молекулы не передвигается ни в одну из сторон. Молекула просто претерпевает деформирование.

Определение 4

Существуют такие диэлектрики, в которых в условиях отсутствующего электрического поля молекулы имеют дипольный момент (полярные молекулы).

В случае, когда поле отсутствует, такие молекулы, принимающие непосредственное участие в тепловом движении, ориентированы беспорядочно. Если же диэлектрик находится в поле, молекулы, в основном, ориентируются по его направлению. Соответственно, диэлектрик проходит процесс поляризации.

Определение 5

У симметричных молекул, таких как, к примеру, O2, N2, в отсутствие поля центры тяжести отрицательных и положительных зарядов одинаковы. По этой причине собственного дипольного момента у молекул нет (неполярные молекулы). У несимметричных же молекул (возьмем в качестве примера H2O, CO) центры тяжести сдвинуты друг относительно друга, в результате чего молекулы имеют дипольный момент и носят название полярных.

Также существуют диэлектрические или же ионные кристаллы, которые формируются при помощи ионов с противоположным знаком. Такой кристалл состоит из пары “вдвинутых” друг в друга кристаллических решеток, одна из которых является положительной, а вторая — отрицательной. В целом кристалл условно можно принять за подобие гигантской молекулы.

Процесс наложения электрического поля провоцирует сдвиг одной решеток относительно друг друга, вследствие чего и происходит поляризация ионных кристаллов. Существует также тип поляризованных без участия поля кристаллов. При дальнейшем исследовании поведения диэлектриков в электрических полях механизм возникновения поляризации значения иметь не будет.

Существенным фактом является только то, что поляризация диэлектрика происходит через появление некомпенсированных макроскопических зарядов. Значения объемной плотность зарядов (ρ) и поверхностной плотности (σ) неполяризованного диэлектрика равняются нулю. После же процесса поляризации σ≠0, а в некоторых случаях и ρ≠0. Поляризация приводит к появлению в тонком поверхностном слое диэлектрика избытка связанных зарядов с одним знаком.

В том случае, если ортогональная или же перпендикулярная часть напряженности поля En→≠0 на приведенном участке, то в результате влияния поля заряды с одним знаком уходят внутрь, а с другим, наоборот, выходят наружу.

Вектор поляризации диэлектрика

Определение 6

Поляризованность P→ или, другими словами, вектор поляризованности характеризует степень поляризации диэлектрика:

P→=∆ρ→∆V,

где ∆ρ представляет собой дипольный момент элемента диэлектрика.

Определение 7

В условиях неполярных молекул вектор поляризованности может быть определен в следующем виде:

P→=1∆V∑∆Vρi→=Nρ0→,

где сложение идет относительно всех молекул в объеме △V. N — концентрация молекул,
ρ0→ является индуцированным дипольным моментом (Он один и тот же у всех молекул). ρ0→E→.

Определение 8

Формула поляризованности в условиях полярных молекул принимает вид следующего выражения:

P→=1∆V∑∆Vρi→=Np→,

в котором P→ представляет собой среднее значение дипольных моментов, которые равнозначны по модулю, но обладают разными направлениями.

В изотропных диэлектриках средние дипольные моменты по направлению идентичны напряженности внешнего электрического поля. У диэлектриков с молекулами полярного типа, вклад в поляризованность от наведенных зарядов значительно ниже вклада от переориентации поля.

Определение 9

Ионная решеточная поляризации может быть описана следующей формулой: P→=1∆V∑∆Vρi→=Np→.

В большей части случаев подобная поляризация является анизотропной.

Пример 1

Если представить плоский конденсатор, который заполнен диэлектриком так, как это проиллюстрировано на рисунке 1, то на принадлежащей ему левой обкладке расположен положительный заряд, а на правой — отрицательный.

По причине того факта, что разноименные заряды притягиваются друг к другу, у положительной обкладки на поверхности диэлектрика появится отрицательный заряд, а у правой, то есть отрицательной – положительный заряд диэлектрика.

Выходит, что поле, формирующееся поляризационными зарядами, имеет противоположное направлению поля направление, которое создают обкладки, соответственно, диэлектрик ослабляет поле.

Рисунок 1

+q,−q представляют собой заряды на обкладках конденсатора.

E→ является напряженностью поля, которое формируется обкладками конденсатора.

−q′, +q′- это заряды диэлектрика.

Источник: https://Zaochnik.com/spravochnik/fizika/elektricheskoe-pole/dielektriki/

Проводник (электрический проводник)

Проводник – это вещество или материал, которое отлично проводит электрический ток.

Как вы все знаете, любое вещество состоит из атомов. Атомы в свою очередь состоят из электронов и ядер

Давайте для понимания рассмотрим вот такую картинку. Предположим, что пастух – это ядро, а овцы вокруг него – это электроны.

Те овцы, которые находятся рядом с пастухом, не могут от него просто так взять и убежать, так как он присматривает за ними. Иначе останется без мяса и шерсти к осени. Но вот те овцы, которые находятся поодаль от пастуха, имеют все шансы от него убежать.

То же самое можно сказать и про атомы и электроны. Электроны, которые находятся на самой дальней орбите от ядра менее зависимы, чем те, которые расположены ближе к ядру.

В результате, такие электроны могут “оторваться” от ядра и начать самостоятельное путешествие по веществу. Такие электроны называются свободными электронами.

Удельное сопротивление

И вот мы плавно переходим к другому вопросу, что такое сопротивление проводника? Как я уже говорил выше, чем больше свободных электронов в веществе, тем лучше такое вещество проводит электрический ток. Следовательно, сопротивление проводника зависит от того, сколько свободных электронов содержит такой проводник. Поэтому, в физике есть такое понятие, как удельное сопротивление вещества.

Еще раз. Если в каком-либо веществе полно свободных электронов, то такое вещество будет хорошо проводить электрический ток. Если электронов еще меньше, то такое вещество будет плохо проводить электрический ток. А если свободных электронов почти нет, то такое вещество совсем не будет проводить ток. Поэтому, удельное сопротивление вещества показывает способность этого вещества препятствовать электрическому току, проходящему через него.

Удельное сопротивление выражается в единицах Ом × м.

Формула удельного сопротивления проводника

где

ρ – это удельное сопротивление, Ом × м

R – сопротивление проводника, Ом

Источник: https://www.RusElectronic.com/provodnik/

Диэлектрик — что это? Отвечаем на вопрос. Свойства диэлектриков

Диэлектрик — это материал или вещество, которое практически не пропускает электрический ток. Такая проводимость получается вследствие небольшого количества электронов и ионов. Данные частицы образуются в не проводящем электрический ток материале только при достижении высоких температурных свойств. О том, что такое диэлектрик и пойдёт речь в этой статье.

Свойства диэлектриков, принцип работы

Диэлектрикивещества, в которых может сохраняться более или менее длительное время раз созданное электрическое поле без затраты энергий на поддержание его.

Если в диэлектрике имеются свободные заряды, то они будут, перемещаясь под действием электрического поля и доходя до поверхности, нейтрализовать внешние заряды, создающие поле, или же создавать обратное поле, ослабляющее внешнее, приложенное.

Перемещение зарядов будет длиться до тех пор, пока результирующее поле в нем не станет равным нулю.

Движение свободных зарядов обусловливает электропроводность. Требование, чтобы в веществе существовало электрическое поле, может быть сведено к тому, чтобы электропроводность вещества была достаточно мала. Практически можно считать диэлектриком вещество, уд. сопротивление которого > 10 в 10 -й степени Q-см.

Термин диэлектрик является условным: когда вещество подвергается лишь кратковременному воздействию напряжения и поле в диэлектриках существует лишь кратковременно, они могут считаться вещества, обладающие значительно меньшим удельным сопротивлением, чем указано выше, например дестилированная вода. Наоборот, при длительно приложенном постоянном напряжении мы вынуждены в ряде случаев трактовать вещества с указанным выше уд. сопротивлением как проводники.

Все вещества независимо от агрегатного состояния построены из зарядов, связанных большими или меньшими силами взаимодействия. Чтобы вещество было диэлектриком, т. е..обладало малой электропроводностью, необходимо, чтобы заряды, ионы и электроны, из которых оно построено, при наложении поля не могли свободно перемещаться.

В изолированном атоме энергия электронов может иметь согласно требованиям волновой механики не любые, а лишь определенные дискретные значения W1, W2, W3, (фигура, а). При соединении атомов в твердую кристаллическую решетку каждый из этих уровней несколько смещается и расщепляется на целый ряд тесно расположенных новых уровней, образующих зону, общую для всего кристалла (фигура, б).

В кристаллической решетке энергия электронов может иметь лишь значения, лежащие в пределах зон; значения же энергии, которые соответствуют промежуткам между зонами, для электронов запрещены. Каждая зона согласно принципу Паули может вместить лишь ограниченное количество электронов. Электроны будут стремиться расположиться на возможно более низких энергетических уровнях, однако нижняя зона не сможет их всех вместить, и они заполнят ряд зон.

Если при этом наиболее высокая из тех зон, в которых размещены электроны, будет заполнена ими лишь частично, то находящиеся в этой зоне электроны при наложении поля будут иметь возможность в пределах зоны свободно перемещаться и могут считаться свободными; данное вещество будет хорошо проводить ток (являться проводником).

Если же эта наиболее высокая из занятых зон будет заполнена электронами полностью, то электроны не могут смещаться под влиянием поля и должны считаться связанными, — данное вещество является диэлектриком.

В случае аморфных твердых веществ, характеризуемых беспорядочным расположением атомов, зоны, общие для всего кристалла, не могут образоваться, поэтому электроны будут лишены возможности перемещаться, и следовательно такое вещество окажется диэлектриком.

Помимо движения электронов необходимо учесть также движение атомов или ионов. Тепловое движение этих частиц будет заключаться в колебаниях около положения равновесия. В наличии окажется однако некоторое количество ионов, энергия теплового движения которых столь велика, что они могут преодолеть связывающие их силы. Эти ионы мы назовем условно «свободными».

Такие ионы покинут свои места и перейдут на другие, где их потенциальная энергия, так же как и в местах, откуда они ушли, будет возможно малой. В случае диэлектрика, имеющих кристаллическую решетку с плотной упаковкой, местами, где могут находиться ионы в равновесном состоянии, являются узлы решетки.

Перескоки ионов в таких материалах согласно Шоттки могут происходить лишь в том случае, когда некоторое количество узлов решетки с самого начала не занято ионами (в решетке имеются «дырки»). Тепловое движение в этом случае сводится к беспорядочным перескокам ионов с одних узлов решетки на другие.

Аморфные диэлектрики

В аморфных диэлектриках с их более рыхлой структурой имеется значительно больше мест, в которых может находиться ион в равновесном состоянии. Затрата энергии при переходе из одного равновесного состояния в другое также будет различна.

Будут существовать переходы, требующие меньшей затраты энергии, при которых ион не будет однако полностью освобождаться от связывающих его сил, а, оставаясь «полусвязанным», перемещаться лишь на небольшое расстояние. Эти переходы и будут в основном происходить в результате теплового движения.

Некоторое значительно меньшее количество ионов, более богатых энергией, сможет полностью оторваться от связующих их сил. Эти ионы по аналогии со случаем кристаллической решетки можно условно назвать «свободными». Данная картина теплового движения соответствует твердому состоянию.

Переход от твердого к жидкому состоянию

Переход от твердого к жидкому состоянию происходит различно для кристаллических и для аморфных веществ. В первом случае мы наблюдаем резкую t°пл T8, причем вязкость жидкости уже при температуре Тs мала.

В случае аморфных диэлектриков t°пл не наблюдается, а переход из одного состояния в другое происходит в первом приближении непрерывно путем постепенного уменьшения вязкости.

Более детальное изучение явления перехода из твердого в жидкое состояние показывает однако, что существует некоторая характерная для данного вещества температуpa Тg, при которой вязкость испытывает резкий скачок и вещество, оставаясь весьма вязким, начинает течь.

Ниже температуры Тg вещество следует считать твердым, выше — жидкостью. При температуpax, несколько превышающих Тg, аморфный диэлектрик сохраняет ряд свойств, характерных для твердого состояния. Молекулы диэлектрика остаются еще частично упруго связанными.

Чем выше температура, тем слабее эти упругие связи; при температурах, значительно превосходящих Тg, можно в первом приближении считать, что молекулы в жидкости перемещаются свободно. При температуpax, близких к началу размягчения, перемещение молекул хотя уже и является принципиально возможным, но сильно затруднено.

Внешне это сказывается в том, что вязкость такой жидкости еще очень велика. При повышении температуры перемещение молекул встречает меньше препятствия; параллельно убывает и вязкость.

За меру того, в какой степени молекулы «свободны» в своих перемещениях, мы можем поэтому выбрать вязкость жидкости. Тепловое движение молекул в жидкостях заключается:

  1. в колебании около положения равновесии, когда они связаны в комплексы,
  2. в поступательных и вращательных перемещениях когда они свободны.

При плавлении кристаллического диэлектрика, имеющих ионную решетку (например солей), получается как правило проводящая жидкость, которая диэлектриком считаться не может. В случае кристаллов с атомной и молекулярной решеткой плавление приводит в диэлектрическим жидкостям, имеющим малую вязкость; перемещение молекул в этих жидкостях можно считать свободным.

Жидкости кроме нейтральных молекул всегда содержат некоторое количество ионов, получившихся как вследствие диссоциации молекул жидкости, так и вследствие диссоциации молекул примесей. В газообразном состоянии как поступательное, так и вращательное движение молекул ничем не ограничено.

Диэлектрик в постоянном электрическом поле

При помещении диэлектрика в постоянное электрическое поле заряды, из которых он построен, оказываются подверженными действию сил обусловливающих:

  1. смещение связанных зарядов (электроны, ионы),
  2. наложение на беспорядочное тепловое движение некоторого упорядоченного, состоящего в перемещении положительных зарядов в направлении поля, отрицательных зарядов — в обратном направлении.

Это упорядоченное перемещение может:

  • а) привести к новому равновесному состоянию с несколько измененным распределением зарядов, по достижению которого упорядоченное движение прекращается (вращение дипольных молекул, перемещение полусвязанных ионов);
  • б) продолжаться непрерывно, пока в нем существует в электрическое поле (свободные ионы и электроны).

Поляризации диэлектрика

Эти процессы будут развиваться с разной скоростью. Смещение связанных зарядов потребует для своего завершения лишь весьма малого времени; значительно медленнее протекают процессы. Смещение зарядов в электрическом поле, указанное, вызывает образование обратного поля, которое ослабляет приложенное внешнее поле.

Это явление носит название поляризации диэлектрика. Мерой ослабления поля внутри него служит электрическая проницаемость (постоянная).

Поскольку процесс поляризации не протекает мгновенно, а требует для завершения некоторого конечного промежутка времени, постольку связанные с явлением поляризации величины, в частности диэлектрическая проницаемость, не являются константами, а переменными величинами, зависящими от времени.

При повышении температуры увеличивается интенсивность теплового движения, и переход в упорядоченное состояние затрудняется. Вследствие этого при наличии процессов, на поляризацию диэлектрика и его диэлектрическую проницаемость должна влиять и температуpa, причем при повышении температуры диэлектрическая проницаемость должна убывать.

Пробой диэлектрика

При всех указанных явлениях в диэлектрике после приложения напряжения через больший или меньший промежуток времени создается стационарное или квазистационарное (при переменном напряжении) состояние, характеризуемое устойчивыми во времени значениями поляризации, электропроводности или соответственно диэлектрических потерь. Однако, если увеличивать напряженность поля, то имеется некорый предел, выше которого стационарное состояние нарушается. Текущий через него ток начинает ускоренно возрастать во времени, электропроводность резко увеличивается, вещество перестает быть диэлектриком и становится проводником, происходит пробой.

Характеризующее пробой прогрессирующее во времени возрастание электропроводности может находиться в зависимости от рода вещества и его агрегатного состояния, а также таких факторов, как температуpa, вид напряжения, длительность воздействия напряжения и т. д., и обусловлено различными явлениями. Эти явления могут быть сведены в две основные группы:

  1. явления тепловые: возрастание электропроводности обусловлено прогрессирующим разогревом диэлектрика, выделяющимися в нем потерями; пробой наступает тогда, когда стационарное тепловое состояние его становится невозможным;
  2. явления чисто электрические: возрастание электропроводности обусловлено увеличением числа свободных зарядов в результате либо ударной ионизации, т. е. срыва связанных зарядов движущимися зарядами, либо срыва связанных зарядов непосредственно самим полем.

Диэлектрики находят широкое применение в технике как электроизолирующие материалы.

Источник: https://www.masterovoi.ru/dielektriki

SA. Проводники и диэлектрики

  • Проводниками называются вещества, по которым могут свободно перемещаться электрические заряды. Термин «проводник» является переводом с английского слова сonductor, который ввел Ж.Т.Дезагюлье в 1739 г.

    для обозначения «тел, действующих как каналы для транспорта электрической силы».

Проводниками являются металлы, электролиты (растворы, проводящие ток) плазма.

В металлах носителями зарядов являются свободные электроны, в электролитах – положительные и отрицательные ионы, в плазме – свободные электроны и ионы.

У большинства металлов практически каждый атом теряет электрон и становится положительным ионом. Например, у меди в 1 м3 свободных электронов 1029. Свободные электроны в металлах находятся в непрерывном беспорядочном движении. Скорость такого движения примерно равна 105 м/с (100 км/с).

Не смотря на наличие внутри тела зарядов (свободных электронов и ионов), электрического поля внутри проводника нет. Отдельные заряженные частицы создают микроскопические поля. Но эти поля внутри проводника в среднем компенсируют друг друга (рис. 1).

  • Если бы это условие не выполнялось, то свободные заряды, под действием кулоновских сил, пришли бы в движение. Они двигались бы до тех пор, пока действующая на них сила не обратилась бы в нуль.

Поместим незаряженный проводник, например, металл, в однородное электростатическое поле с напряженностью \(~\vec E_0\). На свободные электроны начинают действовать электрические силы \(\vec F\), под действием которых электроны приходят в движение (рис. 2). Продолжая беспорядочное движение, электроны начинают смещаться в сторону действия силы (скорость смещения порядка 0,1 мм/с).

На одной поверхности проводника образуется область с недостатком электронов, на противоположной – с избытком электронов. Это приводит к появлению еще одного электрического поля с напряженностью \( \vec E_{np}\) (рис. 3).

Общая напряженность \( \vec E\) электрического будет равна

\( \vec E = \vec E_0 + \vec E_{np}, \;\; E = E_0 — E_{np}.\)

Электрическая сила \(F\), действующая на свободные электроны с зарядом q:

\(F = q \cdot E.\)

По мере смещения электронов, заряд на поверхности увеличивается. Это приводит к увеличению напряженности \(E_{np}\) и уменьшению общей напряженности \(E\) (т.к. \(E = E_0 — E_{np}\)). И в какой-то момент напряженность \(E_{np}\) становится равной напряженности внешнего поля \(E_0\), т.е. \(E_{np} = E_0\), и общая напряженность поля внутри проводника становится равной нулю.

Электрическая сила \(F\) в этот момент также становится равной нулю, электроны перестают смещаться, но беспорядочное движение не прекращается. На поверхности проводника остаются электрические заряды.

Явление возникновения электрических зарядов на поверхности проводника под воздействием электрического поля называется электростатической индукцией, а возникшие заряды – индуцированными.

  • Доля электронов, которые оказались на поверхности, очень мала. Например, если к медной пластинке толщиной в 1 см приложить напряжение в 1000 В, то эта доля составляет 10–10 % от всех свободных электронов.

Каким бы способом ни был заряжен проводник, внутри него поле отсутствует. Это позволяет использовать заземленные полые проводники со сплошными или сетчатыми стенками для электростатической защиты от внешних электростатических полей. Так, например, для защиты военных складов, служащих для хранения взрывчатых веществ, от удара молнии их окружают заземленной проволочной сетью.

  • Впервые явление электростатической защиты было обнаружено М.Фарадеем в 1836 году. Он провел интересный опыт. Большая деревянная клетка была оклеена тонкими листами олова, изолирована от земли и сильно заряжена. В клетке находился сам Фарадей с очень чувствительным электроскопом. Несмотря на то, что при приближении к клетке тел, соединенных с землей, проскакивали искры, внутри клетки электрическое поле не обнаруживалось.

Диэлектрическая проницаемость

Таким образом, во всех диэлектриках, помещенных в электростатическое поле, происходит уменьшение напряженности этого поля. Степень ослабления поля зависит от свойств диэлектрика. Для характеристики электрических свойств диэлектриков вводится особая величина, называемая диэлектрической проницаемостью.

  • Диэлектрическая проницаемость ε — это физическая величина, равная отношению модуля напряженности электрического поля E0 в вакууме к модулю напряженности электростатического поля Ε внутри однородного диэлектрика

Источник: http://www.physbook.ru/index.php/SA._%D0%9F%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%B8%D0%BA%D0%B8_%D0%B8_%D0%B4%D0%B8%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D0%BA%D0%B8

ЭТО ИНТЕРЕСНО:  Что такое электрическая проводимость
Понравилась статья? Поделиться с друзьями:
ЭлектроМастер
Реле напряжения или стабилизатор что лучше

Закрыть