Как устроен датчик температуры

Датчики температуры. Виды и принцип действия, Как выбрать

как устроен датчик температуры

Датчики температуры нужны для того, чтобы проконтролировать температуру в помещении, жидкости, твердого объекта или расплавленного металла.

Основой действия температурных датчиков в автоматизированном управлении является изменение температуры в электрический сигнал. Это обуславливает преимущества электрических измерений: результаты легко передавать по сети, скорость передачи может быть достаточно высокой. Величины могут преобразовываться друг в друга и обратно. Цифровой код создает повышенную точность замера, скорость и чувствительность.

Термопары

Термопара представляет собой две проволоки из разных металлов, спаянных между собой. При разности температур между горячим и холодным концом в цепи возникает электрический ток. Величина этого электрического тока зависит от термоэлектрической силы термопары, составляет от 40 до 60 мкВ, в зависимости от материала термопары. Материал термопары может быть разным. Это могут быть никель-хромовые, хромо-алюминиевые, железо-никелевые, железо-константановые и т.д.

Термопара является высокоточным датчиком температуры, однако эту точность достаточно проблематично снять. Термопара является относительным датчиком температуры, уровень ее напряжения имеет зависимость от температурной разности между спаями. При этом холодный спай находится при комнатной температуре или при какой-либо другой.

Рассмотрим работу термопары ближе. Есть две термопары и две температуры горячего и холодного конца. Соответственно ЭДС зависит от разности температур. Температуру холодного спая необходимо компенсировать. Аппаратным способом компенсации является использование второй термопары, которая помещена в заранее известную температуру.

Программным способом компенсации является использование другого датчика температуры, на этот раз абсолютного, который помещается в изотермическую камеру вместе с холодными спаями и контролирует их температуру с заданной точностью. Имеются трудности снятия данных с термопары.

Во-первых, она нелинейная. В ГОСТе заботливо введены коэффициенты полинома для перевода ЭДС в температуру и обратно. Эти полиномы большого порядка, но ничто не запрещает спокойно их посчитать силами контроллера.

Во-вторых, другая проблема заключается в том, что термо-ЭДС термопары измеряется в единицах и сотнях микровольт. Соответственно, использование широко доступных аналогоцифровых преобразователей приведет к полному провалу. Нужны прецизионные многоразрядные малошумящие аналогоцифровые преобразователи для того, чтобы использовать термопару в своих конструкциях.

Терморезисторы

Гораздо более простым способом измерения стало применение терморезисторов. Они работают на зависимости сопротивления материалов от внешней температуры. Металлические термометры сопротивления, в частности платиновые обладают очень высокой точностью и линейностью. Термометры сопротивления определяются двумя основными характеристиками.

Это базовое сопротивление термометра при определенной температуре. В ГОСТе базовым сопротивлением считается сопротивление при 0 градусах по Цельсию. ГОСТ рекомендует использование нескольких номиналов сопротивлений в Омах и температурный коэффициент, который определяется как разность сопротивлений нашей температуры и при 0 градусов, деленной на нашу температуру и t нуля градусов, умноженную на единицу, деленную на базовое сопротивление.

Ткс = (Re – R0c) / (Te – T0c) *1/R0c

В ГОСТе на терморезисторы вы найдете температурный коэффициент для различных термометров из платины, меди и никеля. Кроме того, там присутствуют коэффициенты полинома для расчета температуры из текущего сопротивления резистора. Одной из проблем термометров сопротивления является очень низкий температурный коэффициент сопротивления. Однако, измерять сопротивление с высокой точностью гораздо проще, чем очень малые значения напряжения в отличие от термопар.

Одним из способов измерения сопротивления является включение нашего термосопротивления в цепь источника тока и измерение дифференциального напряжения.

Использование полупроводников даст нам температурный коэффициент доли единицы процента, их гораздо проще измерять с помощью аналогоцифровых преобразователей. Есть интегральные микросхемы датчиков температуры, аналоговый выход которых уже соответствует питаемому напряжению.

Такие датчики температуры можно напрямую подключать к аналогоцифровому преобразователю и спокойно оцифровывать его с помощью восьми- или десятибитного АЦП.

Комбинированный датчик

Помимо интегральных схем с выходом, существуют датчики с цифровым интерфейсом. Одним из популярных датчиков является комбинированный датчик температуры и влажности серии SHT1. Этот датчик позволяет измерять температуру с точностью + 2 градуса и влажность с точностью + 5 градусов. Главной проблемой данного датчика температуры является то, что там решили оптимизировать интерфейс. Он позволяет подключать параллельные устройства.

Цифровой датчик

Цифровой датчик температуры DS18B20, который представляет собой трехвыводную микросхему, позволяет с высокой точностью до 0,5 градуса получать температуру с множеством параллельно работающих датчиков. В этом датчике широкий интервал температур от -55 до +125 градусов. Основной его недостаток – медлительность. Вычисления с максимальной точностью он делает за 750 мс. Ввиду инерционности корпуса датчика температуры опрашивать его нет никакого смысла.

Бесконтактные датчики (пирометры)

В этом датчике имеется специальная тонкая пленка, поглощающая инфракрасные излучения, тем самым нагревающаяся. Такие бесконтактные термосенсоры используются в тепловизорах. Там имеется не один тепловой датчик, а матрица. Они позволяют на расстоянии до 3 метров детектировать тепловой объект.

Кварцевые преобразователи температуры

Для того, чтобы измерить температуру в интервале -80 +250 градусов применяют кварцевые преобразователи. Они работают на частотной зависимости кварца от температуры. Действие датчиков происходит на частотной зависимости. Функция преобразователя меняется от расположения среза по осям кристалла.

Кварцевые датчики работают с высокой чувствительностью, разрешением, стабильностью. Эти свойства делают их перспективными в использовании. Они получили большое распространение в цифровых термометрах.

Шумовые датчики температуры

Работа шумовых датчиков заключается на зависимости шумовой разности потенциалов на резисторе от температуры. Практически реализовать способ измерения температуры шумовыми датчиками можно, сделав сравнение шумов 2-х одинаковых резисторов, один находится при определенной температуре, 2-й при измеряемой температуре. Шумовые датчики температуры применяются для температурного интервала -270 -1100 градусов.

Преимуществом шумовых датчиков стала возможность измерения температуры в термодинамике на вышеописанной закономерности. Но это осложнено трудным измерением напряжения шума, так как оно мало и сравнимо с шумом усилителя.

Датчики температуры ЯКР (ядерного квадрупольного резонанса)

Термометры ЯКР работают за счет действия градиента поля тока решетки кристалла и момента ядра, которое вызвано отклонением заряда от симметрии сферы. Это создает процессию ядер. Частота имеет зависимость от градиента поля решетки. Для разных веществ имеет величину до тысяч МГц. Градиент зависит от температуры, с ее возрастанием частота ЯКР уменьшается.

Датчики температуры ЯКР образуют ампулу с веществом, помещенную в обмотку индуктивности, которая соединена с контуром генератора. Когда частота генератора совпадает с частотой ЯКР, то энергия генератора поглощается. Допуск замера температуры -263 градуса равен + 0,02 градуса, а температуры 27 градусов +0,002 градуса. Преимуществом термометров ЯКР становится стабильность, неограниченная по времени, недостатком является значительная нелинейность преобразующей функции.

Объемные преобразователи

Объемные датчики действуют на расширении и сжатии веществ при изменении температуры. Диапазон действия преобразователей определяется, насколько стабильны свойства материалов. Датчиками делают измерения температуры в интервале -60 -400 градусов. Допуск измерения составляет от 1 до 5%. Интервал работы датчика с жидкостью может зависеть от температуры закипания и замерзания. Погрешности измерения датчиков на жидкости от 1 до 3%, определяются температурой среды.

Нижняя граница измерения преобразователей на газе определяется температурой перехода газа в жидкое состояние, верхняя граница – стойкостью баллона к воздействию температуры.

Параметры выбора датчика температуры

  • Диапазон рабочей температуры.
  • Возможность погружения датчика в объект измерения или среду. Если это невозможно, то лучше выбрать пирометр или термометр.
  • Условия проведения замеров. Если нужно измерять в агрессивной среде, то надо выбирать датчик в коррозионностойком корпусе, или бесконтактного типа. Также следует определить наличие давления, влажности и т.д.
  • Время работы датчика до калибровки или замены. Многие датчики не могут долго и стабильно работать (термисторы).
  • Величина сигнала выхода. Существуют датчики температуры, выдающие сигнал по току, или в градусах.
  • Технические данные: погрешность, разрешение, напряжение, время сработки. Для полупроводников важен тип корпуса.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/ustrojstva/datchiki-temperatury/

Виды и принцип работы термодатчиков

как устроен датчик температуры

Основной принцип работы температурных датчиков в системах автоматического управления – преобразование температуры в электрическое значение. Эффективность использования электрических величин обеспечена: удобством передачи на большие расстояния с высокой скоростью, возможностью их обратной трансформации, преобразования в цифровой код, чувствительностью измерений. Различают несколько типов устройств.

Принцип действия устройства основан на термоэлектрическом эффекте: если в замкнутом контуре из двух полупроводников или проводников места спаев (контактов) имеют разную температуру, то в нем возникает электрический ток.

Спай, расположенный в среде, в которой происходит измерение температуры, называется «горячим», противоположный контакт – «холодным». Чем больше температура измеряемой среды отличается от температуры воздуха, тем больший электрический ток возникает.

Эти измерительные устройства могут иметь изоляционный слой или изготавливаться без него. Во втором случае термопары могут использоваться только в схемах, не контактирующих с «землей».

Схематичное изображение термодатчика

Виды термопар

  • Хромель-алюминиевые. В основном применяются в промышленности. Характерные особенности: широкий температурный интервал измерений -200+13000°C, доступная стоимость. Не допускаются к применению в цехах с высоким содержанием серы.
  • Хромель-копелевые. Применение сходно с предыдущим типом, особенность – сохранение работоспособности только в неагрессивных жидких и газообразных средах. Часто используются для измерения температуры в мартеновских печах.
  • Железо-константовые. Эффективны в разреженной атмосфере.
  • Платинородий-платиновые. Наиболее дорогие. Для них характерны стабильные и точные показания. Используются для измерения высоких температур.
  • Вольфрам-рениевые. Обычно в их конструкции присутствуют защитные кожухи. Основная область применения – измерение сред со сверхвысокими температурами.

Терморезистивные датчики

Принцип действия резистивных датчиков температуры (RTD) основан на зависимости сопротивления проводника или полупроводника от температуры. Для изготовления проводников применяют материалы с высоким температурным коэффициентом сопротивления и линейным соответствием сопротивления и температуры. Указанные характеристики относятся к пластине, в несколько меньшей степени – к меди.

Преимущества проводниковых термометров сопротивления:

  • простая и надежная конструкция, которая обуславливает использование этих устройств в машиностроении и электронике;
  • высокая точность и чувствительность;
  • простые устройства считывания.

Пример – модель 700-101ВАА-В00, в конструкции которой присутствуют платиновая пластинка и никелевые контакты. Платиновые устройства могут работать в пределах -260+1100°C.

Полупроводниковые датчики температуры демонстрируют высокую стабильность характеристик во времени. Полупроводниковые терморезисторы имеют большой температурный коэффициент сопротивления (ТКС). Датчики температуры с отрицательным ТКС называются термисторами (с ростом температуры сопротивление снижается), с положительным – позисторами (с возрастанием температуры сопротивление увеличивается). Обозначение термисторов – NTC, позисторов – PTC.

Аналоговые

Эти устройства обычно недороги и не требуют сложного ухода. их проблема – шкала. Либо она показывает температуру с высокой точностью, но измерительный интервал при этом очень мал, либо охватывает широкий температурный диапазон, но точность показаний – приблизительна.

Цифровые

Такие устройства дороже, по сравнению с аналоговыми, но их точность гораздо выше. Позволяют производить измерения в широком интервале, применяются в быту и технике.

Конструктивные составляющие цифрового термометра:

  • чувствительный элемент (обычно это терморезистор);
  • аналогово-цифровой преобразователь, который трансформирует электрический сигнал от терморезистора в цифровой;
  • дисплей;
  • элемент питания;
  • вводы-выводы сигналов, необходимые для взаимодействия с другими устройствами.

Таблица видов термодатчиков

Таблица видов термодатчиков

Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.

Источник: https://www.RadioElementy.ru/articles/termodatchiki/

Датчики температуры

как устроен датчик температуры

Термометр сопротивления (Resistance Thermometer) — датчик для измерения температуры, принцип действия которого основан на зависимости электрического сопротивления от температуры.

Термосопротивления могут быть металлические (платина, никель, медь) или полупроводниковые.

Для большинства металлов температурный коэффициент сопротивления положителен — их сопротивление растёт с ростом температуры. Для полупроводников без примесей он отрицателен — их сопротивление с ростом температуры падает.

Термисторы

Термисторы – это полупроводниковые термосопротивления с большим температурным коэффициентом.

  • PTC-термисторы (Positive Temperature Coefficient), обладают свойством резко увеличивать свое сопротивление, когда достигнута заданная температура – широко используются для защиты двигателей
  • NTC-термисторы (Negative Temperature Coefficient), обладают свойством резко уменьшать свое сопротивление при достижении заданной температуры

PT100, PT1000

Платиновые термометры сопротивления (Platinum Resistance Thermometers) обладают высокой стойкостью к окислению и большой точностью измерения.

KTY

Кремниевые терморезисторы с положительным коэффициентом сопротивления, отличаются высокой линейностью характеристики, высоким быстродействием, надёжной твёрдотельной конструкцией и небольшой стоимостью.

Схемы включения термосопротивления в измерительную цепь

  • 2-х проводная схема используется там, где не требуется высокой точности, так как сопротивление присоединительных проводов суммируется с измеренным сопротивлением, что приводит к появлению дополнительной погрешности
  • 3-х проводная схема обеспечивает значительно более точные измерения, т.к. появляется возможность измерить сопротивление подводящих проводов и вычесть его из суммарного измеренного сопротивления
  • 4-х проводная схема — наиболее точная схема, обеспечивает полное исключение влияния подводящих проводов

Сравнение термометров сопротивления с термопарами

Преимущества:

  • выше точность и стабильность
  • можно исключить влияние сопротивления присоединительных проводов на результат измерения при использовании 3-х или 4-х проводной схемы измерений
  • практически линейная характеристика
  • не требуется компенсация холодного спая

Недостатки:

  • малый диапазон измерений
  • не могут измерять высокую температуру.

Термопары

Термопара (Thermocouple) — это два проводника из разных металлов, спаянные в одной точке. Эта точка измерения температуры называется — рабочий спай. Свободные концы называются холодным спаем. Если рабочий спай нагреть относительно холодного спая, то между свободными концами возникает напряжение (термо-ЭДС), пропорциональное разности температур.

Так как с помощью термопары всегда измеряется разность температур, то, чтобы определить температуру точки измерения, свободные концы у холодного спая должны содержаться при известной неизменной температуре.

Подключение к ПЛК

Холодные концы подключаются (непосредственно или с помощью компенсационных проводов, которые должны быть выполнены из тех же металлов, что и термопара) к клеммам соответствующего аналогового входа (с соблюдением полярности!) промышленного контроллера, который программно выполняет компенсацию температуры холодного спая и рассчитывает температуру в точке измерения.

При внутренней компенсации контроллер использует температуру модуля, к которому подключена термопара. При более точной внешней компенсации эталонная температура холодного спая измеряется с помощью дополнительного термометра сопротивления, который подключается к специальному входу контроллера.

Типы термопар

  • K: хромель-алюмель
  • J: железо-константан
  • S, R: платина-платина/родий и др.

Термопары отличаются диапазоном измеряемых температур и погрешностью измерений.

Преимущества термопар

  • Большой температурный диапазон измерения
  • Измерение высоких температур.

Недостатки

  • Невысокая точность
  • Необходимость вносить поправку на температуру холодного конца.

Термостаты

Термостат (Thermostat) – это регулятор, который поддерживает постоянную температуру воздуха или жидкости в системах отопления, кондиционирования и охлаждения.

Источник: https://www.maxplant.ru/article/temperature_sensor.php

Терморезистивные термодатчики

Терморезистивные термодатчики — основаны на принципе изменения электрического сопротивления (полупроводника или проводника) при изменении температуры. Разработаны они были впервые для океанографических исследований. Основным элементом является терморезистор — элемент изменяющий свое сопротивление в зависимости от температуры окружающей среды.

https://www.youtube.com/watch?v=KrZreaAxmhY

Несомненные преимущества термодатчиков этого типа это долговременная стабильность, высокая чувствительность, а также простота создания интерфейсных схем.

ЭТО ИНТЕРЕСНО:  Танталовые конденсаторы как определить

На изображении приведен датчик 702-101BBB-A00, диапазон измерения которого от -50 до +130 °С. Этот датчик относиться к группе кремневых резистивных датчиках(что это такое читайте двумя абзацами ниже). Обратите внимание, на его размеры. Производит этот датчик фирма Honeywell International

В зависимости от материалов используемых для производства терморезистивных датчиков различают:

  1. Резистивные детекторы температуры(РДТ). Эти датчики состоят из металла, чаще всего платины. В принципе, любой мета изменяет свое сопротивление при воздействии температуры, но используют платину так как она обладает долговременной стабильностью, прочностью и воспроизводимостью характеристик. Для измерений температур более 600 °С может использоваться также вольфрам. Минусом этих датчиков является высокая стоимость и нелинейность характеристик.
  2. Кремневые резистивные датчики. Преимущества этих датчиков —хорошая линейность и высокая долговременная стабильностью. Также эти датчики могут встраиваться прямо в микроструктуры.
  3. Термисторы. Эти датчики изготавливаются из металл-оксидных соединений. Датчики измеряет только абсолютную температуру. Существенным недостатком термисторов является необходимость их калибровки и большой нелинейностью, а также старение, однако при проведении всех необходимых настроек могут использоваться для прецизионных измерений.

Полупроводниковые

Источник: http://www.DeviceSearch.ru.com/article/datchiki-temperatury

Датчики и микроконтроллеры. Часть 2. Климат-контроль

Продолжим рассказ о датчиках и в этой части рассмотрим разнообразные датчики самых востребованных DIY-сообществом типов — это многочисленные датчики температуры и датчики влажности. Кроме того, затронем датчики давления воздуха и присутствия газов. Приведем описание номенклатуры датчиков и сошлемся на полезную литературу. Часть 1. Мат. часть.

В ней рассматривается датчик, не привязанный к какому-то конкретному измеряемому параметру. Рассматриваются статические и динамические характеристики датчика.
Часть 2. Датчики климат-контроля. В ней рассматриваются особенности работы с датчиками температуры, влажности, давления и газового состава
Часть 3. Датчики электрических величин.

В ней я коснусь измерения тока и напряжения

5. датчики температуры

Ни один проект по автоматике системы климат-контроля не обходится без датчика температуры, главная задача которого — с необходимой точностью выдавать температуру требуемого объекта, будь то воздух в помещении, охлаждающая жидкость, прожаренный стейк или расплавленный металл(В климат-контроле, ага).

5.1 Термопары

Генераторные датчики температуры, представляющие собой два проводника различных материалов, спаянные с одного конца друг с другом. Главное преимущество термопар — их широкий диапазон температур. Ограниченный, по сути, абсолютным нулем и температурой плавления металлов — т. е. способен измерять там. Где другие датчики просто бессильны — от -270 до +1800 градусов цельсия и выше.

Термопары бывают разные и в зависимости от типа используемых материалов имеют различный диапазон рабочих температур. Их конструкция также зависит от применения. Например, в одной из лабораторий моей родной кафедры валялись вот такие 200-300мм дрыны:
Рисунок 1 Термопара типа К для печей сопротивления А вот так выглядят всеми известные термопары типа К, которые идут в комплекте с мультиметрами(фото из моей коллекции):
Рисунок 2: Термопары типа К для мультиметров.

В ГОСТ Р 8.585-2001 перечисляются следующие типы термопар с их составом, буквенным обозначением и рабочим диапазоном (в скобках указан коэффициент термоЭДС для 25 градусов):

  • платинородий-платиновые — ТПП13 — Тип R, диапазон -50 +1600 С (9мкВ/С).
  • платинородий-платиновые — ТПП10 — Тип S, диапазон -50 +1600 С(6мкВ/С).
  • платинородий-платинородиевые — ТПР — Тип B, диапазон 0 +1800 С
  • железо-константановые (железо-медьникелевые) ТЖК — Тип J, диапазон -210 +1200 С(52мкВ/С)
  • медь-константановые (медь-медьникелевые) ТМКн — Тип Т, диапазон -270 +400 С(41мкВ/С)
  • нихросил-нисиловые (никельхромникель-никелькремниевые) ТНН — Тип N, диапазон +270 +1300 С(27мкВ/С)
  • хромель-алюмелевые — ТХА — Тип K, диапазон -270 +1372 С(41мкВ/С).
  • хромель-константановые ТХКн — Тип E, диапазон -270 +1000 С(61мкВ/С).
  • хромель-копелевые — ТХК — Тип L, диапазон -200 +800 С
  • медь-копелевые — ТМК — Тип М, диапазон -200 +100 С
  • сильх-силиновые — ТСС — Тип I (не представлена в ГОСТ, есть в википедии)
  • вольфрам и рений — вольфрамрениевые — ТВР — Тип А-1, А-2, А-3, диапазон 0 +1800, (+2500 для А-1) С.

Сами по себе являются высокоточными датчиками (точность вплоть до ±0,01 градусов), но такую точность весьма непросто получить. В основе работы датчиков термоэлектрический эффект, открытый в 1821 году немецким физиком Томасом Зеебеком.

Его суть заключается в том, что если спаи двух разнородных материалов, образующих замкнутую электрическую цепь имеют разную температуру T1 и T2, то в цепи появляется электрический ток, направление которого зависит от знака разности температур.
Рисунок 3: Термопара.

Но здесь появляется первая проблема — ЭДС зависит от разности температур между горячим и холодным спаями, поэтому температуру холодного спая следует знать с необходимой точностью, чтобы определить температуру горячего конца. Проблему добавляет и то, что фактически, точки подключения термопары к измерительной системе также являются точками спая двух разных металлов, что вносит свою погрешность.

Поэтому поместим оба холодных конца рядом, дабы выровнять их температуру и будем контролировать ее еще одним датчиком:
Рисунок 4: Программная компенсация холодного спая В этом случае, измерив с конечной точностью абсолютным датчиком температуры температуру холодного спая мы программно сможем ее скомпенсировать. Почему нельзя сразу воспользоваться одним абсолютным датчиком? Покажите мне еще один датчик, способный измерить температуру расплавленного металла.

Если абсолютного датчика под рукой нет, а измерять надо, возьмем еще одну термопару, подключим ее последовательно в противофазе и поместим в среду, температура которой нам известна — например вода со льдом:
Рисунок 5: Аппаратная компенсация холодного спая Но на мой взгляд при наличии широкодоступных точных датчиков температуры использовать бачок с тающей водой, требующей постоянного контроля, немного не технологично.

Поэтому в документации встречаются варианты термостатированных холодных спаев, в которых с помощью точного термостата поддерживается заданная температура. К слову, термостатированный элемент — не такая редкость.Например, генераторы опорного сигнала «гиацинт», стоящие в советской измерительной аппаратуре представляют собой кварцевый резонатор, обмотанный проволокой высокого сопротивления и помещенный в маленький сосуд Дюарда, в котором поддерживается определенная температура.

В результате достигается стабильность частоты до 7-8 знака после запятой.
С проблемой относительности разобрались, теперь попробуем снять показания с термопары. И тут нас поджидают еще две проблемы: Проблема номер раз — термоЭДС измеряется в микровольтах. Например, для термопары типа K температурный коэффициент составляет 41мкВ/градус. Это означает, что милливольтами запахнет только градусов через 25 разницы температур. Напомню из прошлой части, что 12-разрядный АЦП при опорном напряжении 3,3В имеет чувствительность 800мкВ. т. е. В нашем случае 20 градусов/деление. Неплохая однако погрешность. Конечно нужно учитывать малый рабочий диапазон выходного напряжения термопары и ставить усилители на базе ОУ, или включать усиление в самом АЦП.

Там возникнут другие сложности вроде точности оцифровки АЦП, собственных шумов аналоговых трактов ОУ и АЦП и т. п. В последующих главах мы подробно рассмотрим вопрос отношения сигнал/шум, а пока можете почитать книгу Data Conversation Handbook, глава 2

Будем следовать одной истине — использовать прецизионные и малошумящие ОУ и АЦП. В списке дополнительной литературы есть множество различных вариантов схем подключения. Однако одна из наиболее распространенных схем в большинстве массовых измерительных приборов — с использованием терморезистора:
Рисунок 6: Использование терморезистора для компенсации температуры холодного спая Проблема номер два — термопара нелинейна. Нелинейность выглядит следующим образом:
Рисунок 7: Нелинейность термопары Но благо все в курсе этой нелинейности, каждые поверенные измерения аккуратно занесли в табличку и высчитали точные коэффициенты полиномов вида:

(1)

Для расчета температуры исходя из значения ЭДС и наоборот:

(2)

Для каждого типа термопары в ГОСТ 8.585-2001 заботливо приведены все необходимые коэффициенты аппроксимирующих полиномов для температур относительно 0 градусов цельсия. Вот список коэффициентов полинома для распространенной термопары типа К:
Рисунок 8: Список полиномов для термопары типа К в диапазоне температур от 0 до 500 градусов цельсия В принципе, особой проблемы посчитать итоговое значение труда не составит, однако если ваш холодный спай болтается в воздухе при неизвестной температуре — кому это надо? Как итог — термопара — один из лучших датчиков для точного измерения очень горячих, либо очень холодных вещей.

А в моей любимой книге детства — «Радиоэлектронные игрушки» Войцеховского, можно найти описание конструкции термогенератора, от которого предлагается запитать, например, транзисторный радиоприемник. А на марсе от термогенератора аналогичной конструкции, только самую малость потехнологичнее, питается марсоход Curiosity – На Geektimes есть обзорный пост про РИТЭГи.

Рисунок 9: Темроэлектрическая батарея 0,6В 8мА

Минутка бессмысленной и беспощадной практики.

У нас есть отладочная плата на микроконтроллере ATmega1280, пара термопар и желание измерить температуру с хорошей точностью. И у нас это не получится. АЦП контроллера — 10-разрядный, минимальное опорное напряжение может быть выставлено в 1,1В. Тогда чувствительностью АЦП составит:

(3)

Аналоговые входы АЦП позволяют работать в дифференциальном режиме с максимальным усилением в 200 раз. Правда с таким усилением опорное напряжение может быть только 2,56В, да и эффективных остается лишь 7 разрядов. Тогда чувствительность АЦП составит:

(4)

Что примерно в 2,5 раза меньше чем чувствительность термопары типа К(41мкВ). т. е. Теоретически, точность измерительного тракта составит не лучше ± 2,5 градусов. Практически, нам помешают шумы. А их согласно таблице 31-8 датащита целых +-10 знаков — т. е. итоговая точность составит не лучше +-25 градусов. Хе-хе. Это мы еще не учли два полуметровых провода до термопар, отсутствие должной фильтрации аналогового питания и питание всей системы от неплохо шумящего USB. Дай скотче хотя бы в ± 50 градусов уложиться.

Напишем программу, которая будет работать на прерываниях (я набросал ее для одного из комментариев). Средой Arduino воспользуемся как загрузчиком:

Рисунок 10: Натурный эксперимент с двумя термопарами, стаканами и скрепкамиИсходный код:void setup(){autoadcsetup();} void loop(){ }float coeff[] = {0, 2.508388e1, 7.860106e-2, -2.503131e-1, 8.315270e-2, -1.228034e-2, 9.804036e-4, -4.413030e-5, 1.057734e-6, -1.052755e-8 }; void autoadcsetup(){//set up TIMER0 to 61Hz//TIMER0_OVF will be the trigger for ADC/*normal mode, no prescaler16MHz / 256 /1024 = 61 Hz*/TCCR0B = (1

Источник: https://habr.com/post/259203/

Введение в температурные датчики: термисторы, термопары, RTD и микросхемы термометров

Узнайте о различных типах температурных датчиков и их преимуществах и недостатках.

Температурные датчики

Температурные датчики относятся к числу наиболее часто используемых датчиков. Температурные датчики используются всеми типами оборудования, начиная от компьютеров, автомобилей, кухонной техники, кондиционеров и (конечно) домашних термостатов. Пять наиболее распространенных типов температурных датчиков включают в себя:

  • термисторы;
  • термопары;
  • RTD (резистивные датчики температуры);
  • цифровые микросхемы термометров;
  • аналоговые микросхемы термометров.

Данная статья предоставит вам краткое введение по каждому из перечисленных типов датчиков.

Термистор

Как следует из названия, термистор (т.е., терморезистор) представляет собой датчик температуры, сопротивление которого зависит от температуры.

Термисторы выпускаются двух типов: PTC (с положительным температурным коэффициентом) и NTC (с отрицательным температурным коэффициентом). Сопротивление PTC термистора с ростом температуры увеличивается. А сопротивление NTC термистора, наоборот, с увеличением температуры уменьшается, и этот тип, по-видимому, является наиболее часто используемым типом термисторов. Смотрите рисунок 1 ниже.

Рисунок 1 – Условные графические обозначения термисторов PTC и NTC

Важно понимать, что связь между сопротивлением термистора и его температурой очень нелинейна. Смотрите рисунок 2 ниже.

Рисунок 2 – Зависимость сопротивления NTC термистора от температуры

Стандартная формула сопротивления NTC термистора в зависимости от температуры определяется следующим образом:

\[R_T=R_{25C}\cdot e{\left\{\beta\left[\left(1/\left(T+273\right)\right)-\left(1/298\right)\right]\right\}}\]

где

  • R25C – номинальное сопротивление термистора при комнатной температуре (25°C). Данное значение, как правило, приводится в техническом описании;
  • β (бета) – постоянная материала термистора в Кельвинах. Это значение обычно указывается в техническом описании;
  • T – реальная температура термистора в Цельсиях.

Тем не менее, существует два простых метода, используемых для линеаризации поведения термистора, а именно режим сопротивления и режим напряжения.

Режим линеаризации сопротивления

В режиме линеаризации сопротивления параллельно термистору помещается обычный резистор. Если значение резистора равно сопротивлению термистора при комнатной температуре, область линеаризации будет симметрична относительно точки комнатной температуры. Смотрите рисунок 3 ниже.

Рисунок 3 – Режим линеаризации сопротивления

Режим линеаризации напряжения

В режиме линеаризации напряжения термистор ставится последовательно с обычным резистором, образуя при этом делитель напряжения. Этот делитель напряжения должен быть подключен к известному, фиксированному, стабилизированному источнику опорного напряжения VREF.

Эта конфигурация приводите к созданию выходного напряжения, которое относительно линейно зависит от температуры. И, как и в режиме линеаризации температуры, если сопротивление резистора равно сопротивлению термистора при комнатной температуре, то область линеаризации будет симметрична относительно точки комнатной температуры. Смотрите рисунок 4 ниже.

Рисунок 4 – Режим линеаризации напряжения

Термопара

Термопары обычно используются для измерения более высоких температур и более широких температурных диапазонов.

Чтобы резюмировать, как работают термопары: любой проводник, подвергнутый температурному градиенту, будет генерировать небольшое напряжение. Это явление известно как эффект Зеебека. Величина генерируемого напряжения зависит от типа металла. Практические применения эффекта Зеебека используют два разнородных металла, которые соединены на одном конце и разделены на другом. Температуру соединения можно определить по напряжению на разомкнутых концах проводов.

Существуют различные типы термопар. Определенные комбинации стали популярными, и выбор комбинации зависит от различных факторов, включающих в себя стоимость, доступность, химические свойства и стабильность. Для разных применений лучше всего подходят разные типы, и их обычно выбирают на основе требуемого диапазона температур и чувствительности.

Графики характеристик термопар смотрите на рисунке 5 ниже.

Рисунок 5 – Характеристики термопар

Резистивные датчики температуры (RTD)

Резистивные датчики температуры, также известные как резистивные термометры, являются, пожалуй, самыми простыми для понимания датчиками температуры. RTD похожи на термисторы, поскольку их сопротивление изменяется с изменением температуры. Однако вместо использования специального материала, чувствительного к изменениям температуры (как в термисторах), RTD используют катушку из проволоки, накрученную вокруг сердечника из керамики или стекла.

Провод в RTD выполнен из чистого материала, как правило, из платины, никеля или меди, и этот материал обладает точной зависимостью сопротивления от температуры, которая используется для определения измеряемой температуры.

Аналоговые микросхемы термометров

Вместо использования термистора с постоянным резистором в делителе напряжения, альтернативным решением может стать аналоговый низкотемпературный датчик, такой как TMP36 от Analog Devices. В отличие от термистора, эта аналоговая микросхема обеспечивает выходное напряжение, которое почти линейно; наклон составляет 10 мВ/°C в температурном диапазоне от -40 до +125°C, а его точность равна ±2°C. Смотрите рисунок 6 ниже.

Рисунок 6 – График зависимости выходного напряжения TMP36 от температуры из технического описания

Хотя эти устройства и крайне просты в использовании, но они значительно дороже комбинации термистор-плюс-резистор.

Цифровые микросхемы термометров

Цифровые температурные датчики сложнее, но они могут быть очень точными. Кроме того, они могут упростить всю разработку, поскольку аналого-цифровое преобразование происходит внутри микросхемы термометра, а не в отдельном устройстве, таком как микроконтроллер. Например, DS18B20 от Maxim Integrated имеет точность ±0.5°C и диапазон температур от -55°C до +125°C.

ЭТО ИНТЕРЕСНО:  Как работает дверной звонок

Кроме того, некоторые цифровые микросхемы могут быть настроены на питание от линии данных, что позволяет подключать их только двумя проводами (то есть, данные/питание и земля). Более подробно об «однопроводном» интерфейсе можно почитать здесь.

Рисунок 7 – Структурная схема DS18B20 из технического описания

Сравнение типов температурных датчиков

В приведенной ниже таблице показано сравнение разных типов температурных датчиков, описанных в данной статье. Однако имейте в виду, что эту информацию следует воспринимать как обобщение. Таблица предназначена в первую очередь для тех, у кого нет большого опыта и/или знаний о датчиках температуры.

Таблица 1. Краткое сравнение температурных датчиков Тип датчикаТиповой диапазон температур (°C)Точность (+/- °C)ДостоинстваНедостаткиПрименение
Термистор
  • В пределах 50°C от заданной центральной температуры
  • Общий диапазон: от -40° до 125°
1
  • Низкая стоимость
  • Надежность
  • Небольшие размеры
  • Нелинейный выход
  • Медленный отклик
Измерение температуры окружающей среды
Термопара от -200° до 1450° 2
  • Высокое разрешение
  • Небольшие размеры
  • Широкий температурный диапазон
  • Строго рекомендуется калибровка
  • Требуется два показания температуры: горячее соединение и холодное соединение
Промышленное использование
RTD от -260° до 850° 1
  • Высокая стоимость
  • Хрупкость: часто помещаются в защищенные пробники
Промышленное использование
Аналоговая микросхема от -40° до 125° (TMP36) 2
  • Простое взаимодействие
  • Простота использования
  • Линейный выход
  • Значительно дороже термисторов
  • Ограниченный температурный диапазон
  • Внутренний термостат
  • Цифровой термометр
Цифровая микросхема от -55° до 125° (DS18B20) 0,5
  • Просто использовать с микроконтроллерами
  • Точность
  • Линейный выход
  • Требуется микроконтроллер или что-то подобное
  • Значительно дороже термисторов
  • Ограниченный температурный диапазон
  • Внутренний термостат
  • Цифровой термометр
  • Бытовая электроника

Оригинал статьи:

Теги

PTCRTD (резистивный датчик температуры)Аналоговый термометрДатчикДатчик температурыИзмерениеИзмерение температурыТемператураТермисторТермометрТермопараЦифровой термометр

Источник: https://radioprog.ru/post/279

Датчик температуры охлаждающей жидкости: принцип работы и на что влияет

Датчик температуры охлаждающей жидкости осуществляет измерения температуры антифриза в автомобиле. Благодаря показаниям измерителя активируется или оптимизируется работа охлаждающей системы движка. Это устройство есть в любых автомобилях любых марок, будь то нива шевроле или опель астра.

Во многих машинах устройства могут быть взаимозаменяемы или, проще говоря, одними и теми же для разных моделей. Так, например датчик температуры охлаждающей жидкости 2107 является таким же, как и датчик температуры охлаждающей жидкости 2114, аналогично им устроены и форд фокус 1 с форд фокус 2. Температурный датчик используется, в том числе для регулирования температуры охлаждающей жидкости камаз, или иных большегрузов.

Датчик температуры охлаждающей жидкости 2107

На что влияет работа измерителя?

Датчик температуры охлаждающей жидкости проще всего рассмотреть на наглядном примере. Возьмем два одинаковых рено дастер. Один рено дастер обозначим – j, а другой – h при этом второй будет иметь неисправный датчик температуры охлаждающей жидкости.

Сделаем акцент на работе двигателя, поэтому отправим их по одному маршруту с неровной дорогой, в гору и с горы в жаркий день.

В результате получаем всевозможные проблемы, связанные с аварийной температурой охлаждающей жидкости выясняем принцип работы детектора и механический потенциал частей автомобиля с работающей и не работающей системой.

  • Оба автомобиля ехали с примерно одной скоростью, но прибыли на место в разное время. Так пока j ехал с автоматической регулировкой мощности охлаждения, он не беспокоился о возможном перегреве. В то время как h двигался с постоянной скоростью даже в гору, но при работе машины под палящим солнцем беспокоился о возможном закипании и то и дело останавливался, чтобы осмотреть движок.
  • В конце пути j потратил топлива на 30% меньше чем h в результате того что системы охлаждения h работали даже когда этого не требовалось.
  • В пути водитель j ехал в комфортных условиях представляя себя если не в ауди а6 то как минимум близко к нему. В то время как водитель h чувствовал себя в старенькой ауди 80 или в видавшей виды шевроле лачетти. Иными словами комфорт от автомобиля своего класса у одного из водителей был выше обычного, а у другого заметно ниже.
  • Если пустить машины проехать так тысячу километров, то в результате получим сильно изношенную h и запылившуюся, но в исправном состоянии j.

Аналогичным образом работают и датчики других машин, будь то гольф или матиз. Хваленый всеми критиками фольксваген пассат б3 никогда не даст того же качества работы и уровня комфорта, не работай у него исправно измеритель охлаждающей жидкости фольксваген установленный в нем.

Важно помнить, что даже похожие автомобили разных производителей как, например чери амулет и дэу нексия имеют разные измерители. Несмотря на то, что по сути своей измерители делают одну и ту же работу, отличаются они по типу монтажа, устройству двигателя и системы охлаждения. Именно поэтому следует читать паспорт автомобиля и четко знать какая модель запасной части ему подойдет, и не пытаться вставить в чери купленный на днях 96182634 датчик температуры.

Как же устроен датчик указателя температуры охлаждающей жидкости?

По сути своей вся работа устройства заключена в его чувствительном элементе измеряющем температуру, и в его подключении непосредственно к автоматике автомобиля или приборной панели для прямого извещения водителя о текущем состоянии антифриза.

Источник: https://alertok.ru/oborudovanie/datchiki/kakovy-funktsii-datchika-temperatury-ohlazhdayushhej-zhidkosti.html

Основные типы датчиков

   В целом, существует два методы получения данных:

   1. Контактный. Контактные датчики температуры находятся в физическом контакте с объектом или веществом. Они могут быть использованы для измерения температуры твердых тел, жидкостей или газов.

   2. Бесконтактный. Бесконтактные датчики температуры производят обнаружение температуры, перехватывая часть инфракрасной энергии, излучаемой объектом или веществом и чувствуя его интенсивность. Они могут быть использованы для измерения температуры только в твердых телах и жидкостях. Измерять температуру газов они не в состоянии из-за их бесцветности (прозрачности).

Типы датчиков температуры

   Есть много различных типов датчиков температуры. От простых контролирующих процесс вкл/выкл термостатического устройства, до сложных контролирующих системы  водоснабжения, с функцией её нагрева применяемых в процессах выращивания растений. Два основных типа датчиков, контактные  и бесконтактные далее подразделяются на резистивные, датчики напряжения и электромеханические датчики. Три наиболее часто используемых датчика температуры это:

  • Термисторы
  • Термопреобразователи сопротивления
  • Термопары

   Эти датчики температуры отличаются друг от друга с точки зрения эксплуатационных параметров.

Преимущества термисторов

  • Большая скорость реагирования на изменения температуры, точность.
  • Низкая стоимость.
  • Более высокое сопротивление в диапазоне от 2,000 до 10,000 ом.
  • Гораздо более высокая чувствительность (~200 ом/°C) в пределах ограниченного диапазона температур до 300°C.

Зависимости сопротивления от температуры

   Зависимость сопротивления от температуры выражается следующим уравнением:

   где A, B, C — это константы (предоставляются условиями расчёта), — сопротивление в Омах, — температура в Кельвинах. Вы можете легко рассчитать  изменение температуры от изменения сопротивления или наоборот.

Как использовать термистор?

   Термисторы оцениваются по их резистивному  значению при комнатной температуре (25°C). Термистор-это пассивное резистивное  устройство, поэтому оно требует производства контроля текущего выходного напряжения. Как правило, они соединены последовательно с подходящими стабилизаторами, образующими делитель напряжения сети.

   Пример: рассмотрим термистор с сопротивлением значение 2.2K при 25°C и 50 Ом при 80°C. Термистор подключен последовательно с 1 ком резистором через 5 В питание.

   Следовательно, его выходное напряжение может быть рассчитано следующим образом:

   При 25°C, RNTC = 2200 Ом;

   При 80°C, RNTC = 50 Ом;

   Однако, важно отметить, что при комнатной температуре стандартные значения сопротивлений различны для различных термисторов, так как они являются нелинейными. Термистор имеет экспоненциальное изменение температуры, а следовательно-бета постоянную, которую используют, чтобы вычислить его сопротивление для заданной температуры. Выходное напряжение на резисторе и температура  линейно связаны.

Резистивные датчики температуры

   Температурно-резистивные датчики (термопреобразователи сопротивления) изготовлены из редких металлов, например платины, чье электрическое сопротивление изменяется от соответственно изменению температуры.

   Резистивный детектор температуры имеет положительный температурный коэффициент  и в отличие от термисторов, обеспечивает высокую точность измерения температуры.  Однако, у них слабая чувствительность. Pt100 являются наиболее широко доступным датчиком со стандартным значение сопротивления 100 Ом при 0°C. Основным недостатком является высокая стоимость.

Преимущества таких датчиков

  • Широкий  диапазон  температур от -200 до 650°C
  • Обеспечивают высокий выход по току падения
  • Более линейны по сравнению с термопарами  и термосопротивлениями

Работа термопар

   Термопара изготовляется из двух разнородных металлов, сваренных вместе, что даёт эффект разности потенциалов от температуры. От разницы температур между двумя спаями, образуется напряжение, которое используется для измерения температуры. Разность напряжений между двумя спаями называется “эффект Зеебека”.

   Если оба соединения имеют одинаковую температуру, потенциал различия  в разных соединениях равен нулю, т.е. V1 = V2. Однако, если спаи имеют разную температуру,  выходное напряжение относительно разности температур между двумя спаями будет равно их разности V1 — V2.

Возможности и принцип действия температурных датчиков с аналоговым выходом

  • 12 сентября 2018 г. в 16:39
  • 513

Предприятия по производству пищевой продукции или работающие с химическими реагентами в силу с производственной необходимости, обязаны контролировать степень нагрева как самого вещества, так и окружающей среды. Аналогичная задача существует в металлургии, логистике, радиотехнике и стала неотъемлемой частью как автоматизации промышленности, так комфортной жизни человека. Одним из наиболее частых решений в этих вопросах стал датчик температуры с аналоговым выходом.

Универсальность использования таких датчиков обуславливается не только материалом, из которого изготовлен чувствительный элемент, но и самим принципом его работы. Обычно датчики температуры с аналоговым выходом разделяют на две группы по типу чувствительного элемента — термосопротивления и термопары.

Принцип действия датчиков температуры с аналоговым выходом

Рассмотрим работу термосопротивлений (терморезисторов). Принцип действия датчиков температуры этого типа основан на изменении сопротивления резистора при перемене степени его нагрева. Чувствительный к температурным сдвигам металл или полупроводник соединён с электрической схемой так, что при нагреве изменяется его сопротивление, и изменяется сила тока, которая может пройти через резистор.

При этом различают два типа термосопротивлений:

  • с отрицательным температурным коэффициентом. У таких приборов при охлаждении до −273°С увеличивается показатель R (сопротивление, измеряемое в Омах);
  • с положительным температурным коэффициентом. У них сопротивление увеличивается в процессе нагрева до 1300°С.

Главное преимущество использования этого вида датчиков температур с аналоговым выходом в их точности, которая может доходить до +0,013 градуса.

К недостаткам можно отнести малый диапазон измерения, что делает такие устройства узкоспециализированными.

Другой тип приборов для контроля нагрева носит название термопары. Принцип работы основан на измерении разности потенциалов на концах термопары (холодный спай), возникающей в результате изменения температуры в месте соединения проводников (горячего спая) термопары.

Приборы, контролирующие степень нагрева или охлаждения вещества, которые поставляет наша компания, уже содержат в себе необходимые схемы преобразования изменения температуры в аналоговый сигнал (0) 420 мА либо 010 В.

Применение датчиков температуры с аналоговым выходом

В ассортименте «РусАвтоматизации» представлен широкий модельный ряд датчиков температуры с аналоговым выходом. Конструктивные отличия обусловлены разными сферами применения.

Например, датчики TER8 — это терморезисторы с чувствительными элементами из платины Pt100 классов B, AA, 1/6 B, A, которые разработаны специально для измерения температурных показателей жидких продуктов питания. Следовательно, все смачиваемые детали изготовлены из сплавов и полимеров, пригодных для использования в пищевой промышленности и имеют соответствующие сертификаты. Датчики температуры с аналоговым выходом TER8 измеряют температуру в пределах от −40 до +150°С.

Или же датчики ТХА, ТЖК, ТХК, ТНН — это термопары с большими диапазонами измеряемых температур от −200 до 1700°С. Устойчивость таких датчиков температуры с аналоговым выходом к избыточному давлению до 25 Бар (до 50 Бар с защитным кожухом) открывает широкие возможности применения в различных сферах производства и промышленности, в том числе металлургии и в нефтепереработке.

Ещё вышеуказанные приборы используются для измерения температуры жидкой среды в технологическом процессе, либо устройствах, потребляющих масло, таких как системы охлаждения трансформаторов, станков и прочих механизмов, где масло потребляется в качестве смазывающе-охлаждающей жидкости. Здесь очень важно измерять температуру самого масла. Если оно перегреется, то параметры, такие как плотность, вязкость и диэлектрическая проницаемость масла изменятся, что может привести к поломке.

Датчики температуры с аналоговым выходом могут измерять температуру окружающей среды, температуру жидкой (сыпучей) среды в технологическом процессе, либо степень нагрева или охлаждения трубопровода в конкретных узлах.

Важно понимать, у какого из представленных датчиков температуры применение будет максимально эффективно в конкретных технологических процессах. Соответственно, при выборе нужно учитывать температурный диапазон и среду, в которых планируется проводить измерения, а также какой аналоговый сигнал на выходе вы хотите получать.

Источник: https://www.elec.ru/articles/vozmozhnosti-i-princip-dejstviya-temperaturnyh-dat/

Датчики измерения температуры: типы, принцип работы

Практически в любой современной аппаратуре есть датчики температуры. Это устройство, которое позволяет измерить температуру объекта или вещества, используя при этом различные свойства и характеристики измеряемых тел или среды. Не смотря на то, что все термодатчики призваны измерять температуру, разные типы датчиков делают это абсолютно по-разному. Давайте подробнее разберем принцип работы и характеристики основных видов термодатчиков.

Классификация термодатчиков по принципу работы

По принципу измерения все датчики измерения температуры подразделяются на:

  • Термоэлектрические (термопары);
  • Терморезистивные;
  • Полупроводниковые;
  • Акустические;
  • Пирометры;
  • Пьезоэлектрические.

Термоэлектрические датчики температуры (термопары)

Принцип работы этой группы датчиков основан на том, что в замкнутых контурах проводников или полупроводников возникает электрический ток, если места спайки различаются по температуре. Для измерения температуры, один конец термопары помещают в среду измерения, а другой служит для снятия значений. Единственным, но существенным недостатком этого вида измерителей является их довольно большая погрешность, что недопустимо для многих технологических процессов.

Примером такого датчика может служить датчик ТСП Метран-246, который предназначен для измерения температуры твердых тел.

Он применяется в металлообработке, и служит для контроля температуры подшипников. Диапазон измерения от -50 до +120 градусов по Цельсию, выходной сигнал для считывания – аналоговый.

о датчиках температуры смотрите ниже:

Полупроводниковые термодатчики

Этот тип датчиков работает на принципе изменения характеристик p-n перехода под воздействием температуры. Так как зависимость напряжения на транзисторе от температуры всегда пропорциональна, можно сделать датчик с высокой точностью измерения.

Несомненными плюсами такого решения является дешевизна, высокая точность данных, и линейность характеристик на всем диапазоне измерения.

Кроме того, их можно монтировать прямо на полупроводниковой подложке, что делает этот тип датчиков незаменимым для микроэлектронной промышленности.

Примером такого устройства может стать датчик LM75A. Температурный диапазон — от -55 С° до +150 С°, погрешность измерений – ±2 С°. Шаг измерения – всего 0,125 С°. напряжение питания – от 2.5 до 5.5 В, а время преобразования сигнала – до 0.1 секунды.

ЭТО ИНТЕРЕСНО:  Что такое емкость аккумулятора

Акустические датчики температуры

Принцип работы этих устройств – разная скорость звука в среде при разной температуре. Зная изначальные данные, можно рассчитать изменения температуры по скорости прохождения звуковой волны в веществе. Это бесконтактный метод, позволяющий измерять температуру в закрытых полостях, а также в среде, недоступной для прямого измерения. Используются такие датчики в медицине и промышленности – там, где проникновение к измеряемому веществу невозможно.

Пирометры (тепловизоры)

Бесконтактный тип термодатчиков, считывающих излучение, которое исходит от нагретых тел. Этот тип устройств позволяет измерять температуру дистанционно, без приближения к среде, в которой производятся замеры. Это позволяет работать с большими температурами и сильно разогретыми объектами без опасного сближения.

Все пирометры по принципу работы подразделяют на интерферометрические, флуоресцентные и датчики на основе растворов, меняющих цвет в зависимости от температуры.

Пьезоэлектрические датчики температуры

Все датчики этого типа работают при помощи кварцевого пьезорезонатора. Вся суть работы – прямой пьезоэффект, то есть изменение линейных размеров пьезоэлемента под воздействием электрического тока. При попеременной подаче разнофазного тока с определенной частотой, пьезорезонатор колеблется, при этом частота его колебаний зависит от температуры. Зная эту зависимость, можно легко преобразовать данные о частоте колебаний резонатора в температуру.

Ещё одно видео о разновидностях термодатчиков:

Благодаря широкому диапазону измерений и высокой точности, такие датчики применяют в основном при проведении исследований и опытов, где нужна высокая надежность и долговечность.

Источник: https://pue8.ru/vybor-elektrooborudovaniya/804-datchiki-izmereniya-temperatury-tipy-printsip-raboty.html

Работа датчика охлаждения

Датчик температуры охлаждающей жидкости двигателя (ДТОЖ) представляет собой датчик температуры в двигателе автомобиля, который по определяет и измеряет температуру двигателя. Информация, полученная от датчика температуры охлаждающей жидкости, затем используется для регулирования температуры двигателя автомобиля.

Принцип работы датчика таков. Датчик температуры охлаждающей жидкости (ДТОЖ), часто располагается рядом с термостатом двигателя транспортного средства таким образом, что он может работать на оптимальном уровне. Наконечник датчика температуры охлаждающей жидкости обычно расположен вблизи охлаждающей жидкости двигателя.

Этот датчик температуры работает путем измерения температуры, которую испускает термостат или охлаждающая жидкость. Температура, которую считывает датчик, затем отправляется на бортовой компьютер или систему управления двигателем в качестве сигнала. Затем система управления двигателем использует информацию, полученную от датчика температуры охлаждающей жидкости, для работы или регулировки некоторых функций двигателя, чтобы он работал на своем оптимальном уровне.

Помимо регулирования температуры двигателя путем включения и выключения охлаждающего вентилятора, информация, полученная от датчика температуры, также используется для определения того, нуждается ли двигатель в более богатой топливной смеси, чтобы игнорировать сигнал обратной связи по обогащению / обеднению датчика кислорода, чтобы открыть рециркуляцию отработавших газов или ограничить продвижение искры во время выброса.

Проверка датчика температуры охлаждающей жидкости

Обычный тест проводится для того, чтобы проверить, работает ли температура охлаждающей жидкости точно. Для диагностики зажигание выключается, а разъем датчика температуры охлаждающей жидкости отсоединяется. Омметр (электрический прибор для измерения электрического сопротивления) подключен к клемме датчика.

Датчик также может быть полностью снят с двигателя и погружен вместе с термометром в наполненный водой контейнер. При нагреве воды в контейнере датчик будет демонстрировать особое сопротивление изменению температуры. Рекомендуется заменить датчик, если он не демонстрирует определенного сопротивления изменяющимся температурам.

Другой подход к измерению датчика температуры охлаждающей жидкости состоит в том, чтобы снять крышку радиатора (часть системы охлаждения автомобиля) и вставить термометр в радиатор с последующим запуском двигателя. При работе двигателя охлаждающая жидкость начинает нагреваться, и, как только температура достигает 97 ° C, вентилятор начинает работать. Если вентилятор по-прежнему не включается, датчик требует полной проверки. Для того чтобы проверить датчик:

  • охлаждающая жидкость сливается из двигателя,
  • снимается катушка зажигания,
  • электрический разъем отсоединяется от датчика, а затем датчик погружается вместе с термометром в емкость (подключенную к омметру) для измерения электрического сопротивления этого датчика при различных уровнях температуры (как обсуждалось ранее).

Что делать, когда датчик температуры не работает

Как и с любым другим компонентом вашего автомобиля, датчик со временем может выйти из строя. Это может вызвать ряд проблем, в том числе перегрев двигателя.

Если вы знаете, где находится датчик двигателя и как он выглядит, вы можете провести визуальный осмотр, чтобы определить, нет ли на нем трещин. Хотя эта визуальная проверка может быть полезной, она не поможет вам диагностировать каждую возможную проблему, поскольку некоторые неисправности датчика могут быть без визуального подтверждения.

Вообще говоря, если ваш датчик не работает, он отправит сигнал на компьютер и загорится индикатор «Check Engine». Если вы видите, что загорелся знак «Проверка двигателя», лучше немедленно связаться с службой технического обслуживания автомобиля.

Замена датчика температуры охлаждающей жидкости

Датчик температуры охлаждающей жидкости может со временем стареть и портиться, поэтому важно знать, как заменить неисправный датчик температуры. Замена CTS часто рекомендуется при восстановлении двигателя и при его повреждении.

Двигатель должен остыть, прежде чем заменить датчик. Охлаждающая жидкость в системе охлаждения должна быть слита перед заменой датчика температуры охлаждающей жидкости. Однако не сливайте радиатор. Достаточно слить только немного охлаждающей жидкости. Откройте клапан, чтобы слить антифриз.

После слива охлаждающей жидкости замените старый датчик новым датчиком температуры охлаждающей жидкости. Важно помнить, чтобы заполнить радиатор охлаждающей жидкостью.

Где находится датчик температуры

Датчик температуры охлаждающей жидкости двигателя расположен в основном в проходе охлаждающей жидкости двигателя с жидкостным охлаждением; обычно рядом с клапаном термостата.

Датчик температуры двигателя подключается либо к датчику температуры, либо к индикатору температуры на приборной панели. В современных автомобилях вы заметите, что нет отдельного датчика температуры двигателя.

 Вместо этого есть крошечный «свет», символизирующий температуру двигателя; который интегрирован с rpm-метром.

После включения зажигания буква «С» также загорается вместе с символом температуры; показывая, что двигатель холодный. Это должно автоматически исчезнуть; после того, как двигатель прогреется до оптимальной температуры (обычно в пределах 2-3 километра от старта движения).

Схема подключения датчика температуры

Признаки неработающего датчика температуры охлаждающей жидкости

Неисправный датчик температуры охлаждающей жидкости может вызвать массу проблем для двигателя, поэтому важно, чтобы датчик всегда был в хорошем состоянии. Как правило, поиск самого датчика поможет определить, является ли деталь неисправной. Однако это будет определять только визуальные повреждения, которые можно увидеть, например, трещину, утечку или коррозию в датчике.

Цифровой вольтметр (DVOM) также может быть использован для внутреннего сопротивления датчика. Показание можно сравнить с обычными характеристиками. Если показания находятся в пределах спецификации, но проблема все еще очевидна, то проблема в проводке.

Один из лучших способов определить, является ли датчик температуры охлаждающей жидкости неисправным или неисправным, состоит в том, чтобы проверить, горит ли контрольная лампа двигателя. Если датчик температуры не работает должным образом, компьютер в двигателе транспортного средства отправит сигнал. Затем эти данные используются для предоставления кода неисправности, который включает лампу проверки двигателя.

Замена датчика температуры автомобиля

Датчик в конечном итоге нужно будет заменить полностью через некоторое время. Если двигатель получает какие-либо повреждения, всегда рекомендуется замена датчика, потому что лучше не рисковать эксплуатацией автомобиля с неисправным датчиком, так как это может повлечь еще более дорогой ремонт двигателя. Даже небольшой износ может привести к эрозии датчика с течением времени.

Датчик температуры охлаждающей жидкости двигателя может работать долго, если его правильно обслуживать. Вот несколько советов, которые помогут вашему двигателю оставаться в хорошем состоянии и избежать проблем, связанных с ДЭХ.

Не используйте водопроводную воду для заправки радиатора

Многие люди совершают эту ошибку, наполняя радиатор обычной водопроводной водой. В водопроводной воде есть элементы ржавчины и других минералов, которые в долгосрочной перспективе могут быть вредны для двигателя, особенно если вода начинает кипеть и испаряться внутри радиатора. Всегда используйте охлаждающую жидкость, так как она обеспечивает надлежащее смазывание и предотвращает образование ржавчины.

Немедленно устранить утечки масла и прокладку

Если в отсеке двигателя есть утечка и масло попадает в блок двигателя, охлаждающая жидкость загрязняется, что приводит к неисправности датчика.

Проверьте на утечки охлаждающей жидкости

Система охлаждения автомобиля не нуждается в постоянной заправке. Однако, если уровень охлаждающей жидкости часто падает, это может привести к утечке, и ее следует устранить немедленно. При недостаточном количестве охлаждающей жидкости в бачке датчик может давать ложные показания компьютеру.

Источник: https://teritoriya-auto.ru/rabota-datchika-ohlazhdeniya/

Устройство, принцип действия, диагностика датчиков температуры

Датчики температуры двигателя. Engine coolant temperature sensor Intake air temperature sensor. Существуют различные типы систем управления двигателем, устройство которых может различаться в значительной мере. Но в любой из систем управления двигателем  обязательно применяется датчик температуры охлаждающей жидкости. В большинстве систем применяется датчик температуры воздуха во впускном тракте двигателя.

Внешний вид датчика температуры двигателя — охлаждающей жидкости (слева) и датчика температуры воздуха во впускном тракте (справа)

В зависимости от температуры охлаждающей жидкости, блок управления двигателем корректирует состав топливовоздушной смеси, частоту вращения коленчатого вала двигателя на холостом ходу, угол опережения зажигания Влияние показаний датчика температуры охлаждающей жидкости на работу системы управления двигателем очень велико.

Например, если вследствие неисправности рассчитанное блоком управления двигателем значение температуры охлаждающей жидкости двигателя не совпадает с фактической температурой охлаждающей жидкости двигателя на значительную величину, двигатель может заглохнуть / не запускаться.

Большинство датчиков температуры воздуха во впускном тракте аналогичны по устройству и принципу действия датчику температуры охлаждающей жидкости. В зависимости от температуры воздуха во впускном тракте, блок управления двигателем несколько корректирует состав топливовоздушной смеси.

Влияние показаний датчика температуры воздуха во впускном тракте на работу системы управления двигателем особенно заметно в таких системах, где не применяется датчик расхода воздуха.

Принцип действия датчиков температуры двигателя

В качестве датчиков температуры охлаждающей жидкости и большинства датчиков температуры воздуха во впускном тракте двигателя применяются терморезисторы с отрицательным температурным коэффициентом — с  увеличением температуры датчика температуры двигателя его сопротивление уменьшается. Датчик температуры охлаждающей жидкости устанавливается в потоке охлаждающей жидкости двигателя.

При низкой температуре охлаждающей жидкости, сопротивление датчика высокое (3,52 kQ при +20 °С); при высокой температуре -сопротивление датчика низкое (240 Q при +90 °С). От блока управления двигателем, через расположенный внутри блока управления двигателем резистор с постоянным электрическим сопротивлением, на датчик температуры двигателя поступает опор. напряжение величиной 5 V.

Второй вывод датчика соединён с «массой».

Схема включения датчика температуры двигателя, в качестве чувствительного элемента которого применяется терморезистор. ECU Блок управления двигателем.

  1. Точка подключения зажима типа «крокодил» осциллографического щупа.
  2. Точка подключения пробника осциллографического щупа для получения осциллограммы выходного напряжения датчика.
  3. Датчик температуры.
  4. Выключатель зажигания.
  5. Аккумуляторная батарея.

Датчик температуры двигателя шунтирует опор. напряжение, вследствие чего, значение напряжения на датчике оказывается меньшим опор. С увеличением температуры охлаждающей жидкости (например, при прогреве двигателя), сопротивление датчика уменьшается и, соответственно, уменьшается напряжение на датчике. По величине этого напряжения блок управления двигателем рассчитывает текущее значение температуры охлаждающей жидкости двигателя.  

Характеристика датчика температуры охлаждающей жидкости

Температура, °С Сопротивление, Q ± 2%
-40 100 700
-30 52 700
-20 28 680
-15 21 450
-10 16 180
-4 12 300
9 420
+5 7 280
+10 5 670
+15 4 450
+20 3 520
+25 2 800
+30 2 240
+40 1 460
+45 1 190
+50 970
+60 670
470
+80 330
+90 240
+100 180
+130 70

 

 Типовые неисправности датчика температуры двигателя

Наиболее распространённой неисправностью датчиков температуры двигателя, в качестве чувствительного элемента которых применён терморезистор, является несоответствие его электрического сопротивления температуре его корпуса.

Чаще всего, такая неисправность проявляется как резкое увеличение электрического сопротивления датчика в очень узком диапазоне температур корпуса датчика (или в нескольких диапазонах температур), реже встречается обрыв чувствительного элемента датчика. В момент, когда температура корпуса датчика попадает в этот диапазон, сопротивление датчика резко увеличивается, вследствие чего увеличивается и напряжение на датчике.

Вследствие этого, рассчитанное блоком управления значение температуры по увеличенному напряжению на датчике оказывается меньшим действительного. Если рассчитанное блоком управления двигателем значение температуры охлаждающей жидкости двигателя окажется меньшим действительного на значительную величину, блок управления может увеличить количество подаваемого топлива настолько, что двигатель заглохнет из-за переобогащения топливовоздушной смеси.

Пуск двигателя при этом становится невозможным. В некоторых случаях может понадобиться замена свечей зажигания. Неисправность датчика температуры двигателя в момент её проявления можно выявить при помощи омметра путём сравнения измеренного сопротивления датчика температуры двигателя с табличным значением для данной температуры.

При необходимости проведения проверки датчика температуры, необходимо просмотреть осциллограмму выходного напряжения датчика во всём диапазоне его рабочих температур.

При проведении проверки датчика температуры необходимо дать двигателю полностью остыть, после чего записать и просмотреть осциллограмму выходного напряжения датчика во время прогрева двигателя, вплоть до момента включения вентилятора системы охлаждения двигателя (или до момента, когда вследствие неисправности диагностируемого датчика двигатель заглохнет).

Осциллограмма напряжения на исправном датчике температуры охлаждающей жидкости. Прогрев холодного двигателя в режиме работы на холостом ходу. По мере прогрева, напряжение на датчике плавно и без каких либо рывков / провалов снижается.

 По мере прогрева датчика, напряжение на исправном датчике должно плавно снижаться.

Осциллограмма напряжения на неисправном датчике температуры охлаждающей жидкости. Двигатель почти прогрелся до рабочей температуры. Отчётливо видны искажения формы осциллограммы.

Напряжение на неисправном датчике температуры охлаждающей жидкости при прогреве двигателя внезапно резко увеличивается. В этот момент, блок управления двигателем резко обогащает топливовоздушную смесь. Но так как в данном случае неисправность датчика проявляется в очень узком диапазоне температур, а следовательно и в течение короткого времени, двигатель не заглох. По мере дальнейшего увеличения температуры охлаждающей жидкости неисправность уже не проявлялась.

В качестве датчиков температуры воздуха во впускном тракте двигателя иногда применяется PN-переход (диод), например, датчик температуры воздуха встроенный в корпус датчика массового расхода воздуха BOSCH HFM5.

Внешний вид датчика температуры воздуха во впускном тракте на основе PN-перехода (датчик температуры встроен в корпус датчика массового расхода воздуха BOSCH HFM5)

С ростом температуры такого датчика при заданном токе, протекающем через датчик, напряжение на датчике снижается от 650 mV до 350 mV.

Источник: http://auto-master.su/content/ustroistvo-printsip-deistviya-diagnostika-datchikov-temperatury

Понравилась статья? Поделиться с друзьями:
ЭлектроМастер
Сварочный аппарат как подключить

Закрыть