Как уменьшить потери в линии электропередач

Потери электроэнергии в СНТ: проблемы и решения

как уменьшить потери в линии электропередач

Объем фактических потерь электроэнергии в садовых некоммерческих товариществах (СНТ) может достигать 30% от индивидуального потребления каждого отдельного абонента. Причиной этому служит совокупность трех факторов: низкое качество сетей, недостоверный учет и хищение электроэнергии. Последовательное устранение этих проблем позволит снизить уровень фактических потерь до нормативного уровня — 5% от общего потребления электроэнергии в пределах сетей СНТ.

Постановка проблемы

Технические потери электрической энергии в распределительных сетях 0,4 кВ — неизбежное явление. Согласно закону Джоуля-Ленца Линии сопротивление провода преобразует часть электроэнергии в тепло. Это — нормативные потери, которые включены в тариф. В исправно работающей распределительной сети их уровень не превышает 2-5% от общего объема переданной электроэнергии. Максимально допустимым считаются потери до 10% от общего потребления. При таком показателе срочные меры не предпринимаются.

Проблема возникает в случае, если технические потери резко возрастают по сравнению с нормативным показателем. В распределительных сетях СНТ рост нормативных потерь вызывают следующие факторы:

  • заниженное сечение провода;
  • физический износ электрооборудования в сети;
  • некачественные соединения;
  • «перекос» нагрузки по фазам;
  • неудовлетворительное состояние цепи по нулевому проводу;
  • увеличение протяженности сетей за счет подключения новых
  • абонентов;
  • ошибки, допущенные при проектировании или прокладке сетей.

Поиск решения

  1. Рассчитайте нормативные потери электроэнергии в сетях СНТ.
  2. Проверьте состояние электрооборудования сетей: трансформатора, кабелей, соединений.
  3. Удостоверьтесь, что сети проложены в соответствии с проектом.

Реализация проекта

  1. Проведите реконструкцию сети: замените неисправный трансформатор, протяните новые провода, замените электрические соединения. Не экономьте на качестве кабелей и другого оборудования. Провода должны быть одинакового сечения на всей протяженности сети. Лучше, если это будут самонесущие изолирующие провода (СИП) в двойной изоляции.

    Такие провода отдают меньше тепла и мешают несанкционированному отбору электроэнергии с линии электропередачи, минуя прибор учета.

  2. Оптимизируйте схему распределения электроэнергии.
  3. Наладьте достоверный коммерческий учет.

  4. После реконструкции сетей подайте в энергоснабжающую организацию заявку на приемку сетей в эксплуатацию. В ходе приемки энергетики заново измерят параметры линии электропередачи, выведут коэффициент нормативных потерь и утвердят его в региональной энергетической комиссии (РЭК).

При правильно и качественно выполненном монтаже распределительной сети 0,4 кВ технические потери в сетях СНТ возвращаются на уровень нормативного показателя.

Размер штрафов за хищение электроэнергии

Чтобы привлечь недобросовестного потребителя к ответственности за хищение электроэнергии, необходимо составить акт о безучетном потреблении энергоресурса. Суд привлечет нарушителей к административной ответственности по ст. 7.19 КоАП РФ. По решению суда на «предприимчивого» садовода будет наложен штраф и денежная компенсация неучтенного потребления, которая начисляется с даты последней проверки прибора учета по действующему нормативу.

Действующие размеры штрафа за безучетное потребление составляют:

  • от 3 тыс. до 4 тыс. рублей для физических лиц;
  • от 6 тыс. до 8 тыс. рублей для должностных лиц;
  • от 60 тыс. до 80 тыс. рублей для юридических лиц.

При обнаружении хищений в особо крупных размерах, нарушителей привлекут к уголовной ответственности по ст. 165 УК РФ. В этом случае потребитель выплатит штраф до 300 тыс. рублей, или в размере дохода за два года. Максимальное наказание грозит принудительными работами или лишением свободы на два года со штрафом до 80 тыс. рублей.

Профилактика коммерческих потерь электроэнергии в сетях СНТ

Комплексно решить проблемы потерь в СНТ позволит внедрение АСКУЭ. Эта технология позволяет исключить факторы, влияющие на увеличение фактических потерь в сети:

  1. Сверхнормативные технические потери в распределительных сетях 0,4 кВ. АСКУЭ с высокой точностью выявляет участки технических потерь электроэнергии и эффективно контролирует состояние самой сети.
  2. Недостоверный учет потребляемой электрической энергии. АСКУЭ обеспечивает полноценный контроль над энергопотреблением всех участников СНТ в режиме реального времени.
  3. Безучетное потребление энергоресурсов. АСКУЭ фиксирует любые попытки оказать воздействие на работу приборов учета в штатном режиме и дистанционно ограничить энергопотребление садовода-нарушителя.

Кроме того, АСКУЭ позволяет участникам СНТ перейти на многотарифную систему учета потребляемой электроэнергии, что даст дополнительную экономию денежных средств для каждого садоводческого хозяйства.

Таким образом, внедрение систем АСКУЭ, является действенным средством профилактики увеличения фактических потерь электроэнергии в сетях СНТ.

АСКУЭ для СНТ на базе LPWAN-технологии,
без проводов и концентраторов.

УЗНАТЬ ПОДРОБНОСТИ

Источник: https://uchet-jkh.ru/publikacii/poteri-elektroenergii-v-snt-problemy-i-resheniya.html

Негативные явления в электросети — их влияние на нагрузку и способы борьбы

как уменьшить потери в линии электропередач

В данной статье будут рассмотрены общие принципы функционирования электросети, негативные процессы, происходящие на линиях электроснабжения и различные методы защиты оконечного оборудования.

Единая энергосистема

Почти все электростанции России объединены в единую федеральную энергосистему, которая является источником электрической энергии для большинства потребителей. Важнейшим и обязательным компонентом любой электростанции является трехфазный турбогенератор переменного тока. Три силовые обмотки генератора индуцируют линейное напряжение.

Обмотки симметрично расположены по окружности генератора. Ротор генератора вращается со скоростью 3000 оборотов в минуту, а линейные напряжения сдвинуты относительно друг друга по фазе. Фазовый сдвиг постоянен и равен 120 градусам. Частота переменного тока на выходе генератора зависит скорости вращения ротора, и в номинале составляет 50 Гц.

Напряжение между линейными проводами трехфазной системы переменного тока называется линейным. Напряжение между нейтралью и любым из линейных проводов называется фазным. Оно в корень из трех раз меньше линейного. Именно такое напряжение (фазное 220 В) подается в жилой сектор. Линейное напряжение 380 В используется для питания мощного промышленного оборудования.

Генератор выдает напряжение в несколько десятков киловольт. Для передачи электроэнергии, с целью уменьшения потерь, напряжение повышают на трансформаторных подстанциях и подают в Линии Электропередачи (далее ЛЭП). Напряжение в ЛЭП составляет от 35 кВ для линий малой протяженности, до 1200 кВ на линиях протяженностью свыше 1000 км.

Напряжение повышают с целью уменьшения потерь, которые напрямую зависят от силы тока. С другой стороны, напряжение ограничивается возможностью изоляции воздуха для ЛЭП и диэлектрика кабеля для кабельных линий. Достигнув крупного потребителя (завод, населенный пункт) электроэнергия опять попадает на трансформаторную подстанцию, где трансформируется в 6–10 кВ, которые уже пригодны для передачи по подземным кабелям.

У каждого многоквартирного жилого дома, или административного здания стоит трансформаторная подстанция, которая выдает на выходе предназначенные для потребителя 380 В линейного напряжения и, соответственно, 220 В фазного. В подстанцию типично заводят два или три высоковольтных кабеля, что позволяет оперативно восстановить электроснабжение, в случае повреждений на высоковольтном участке трассы.

В зависимости от вида подстанции, это может происходить автоматически, полуавтоматически — по команде диспетчера с центрального пульта, и вручную — приезжает аварийка и электрик переключает рубильник. Подстанция также может выполнять функцию регулятора напряжения, переключая обмотки трансформатора, в зависимости от нагрузки.

В России на подстанциях применяют схему с заземленной нейтралью, то есть нейтральный (часто называемый нулевым) провод заземлен. По зданию разводка кабеля происходит пофазно, как с целью распараллеливания нагрузки, так и с целью удешевления оборудования (счетчиков, автоматов защиты).

Подстанция в сельской местности и для небольших домов представляет собой обычно трансформаторную будку или просто трансформатор внешнего исполнения. Именно поэтому, на исправление аварии в таком месте отводятся сутки. Автоматической регулировки напряжения такие подстанции не имеют, и выдают номинал обычно в часы минимальных нагрузок, в остальное время занижая напряжение.

Нормы качества для электросетей

Документом, устанавливающим нормы качества электроэнергии в России, является ГОСТ 13109-97 принятый 1 Января 1999г. В частности, в нем установлены следующие «нормы качества электрической энергии в системах электроснабжения общего назначения«.

Параметр Номинал Предельно
Напряжение, V 220V ±5% 220V ±10%
Частота, Hz 50 ±0,2 50 ±0,4
Искажения, % 8 12
Провалы, сек 3 30
Перенапряжения, V 280 380

Таким образом, даже при нормальном функционировании электросети использование устройств ИБП для компьютерной техники является обязательным, как для защиты целостности данных, так и для обеспечения исправности оборудования. С точки зрения электроснабжения, все потребители делятся на три категории.

Для наиболее массовой категории наших читателей, проживающих в домах с числом квартир более восьми или работающих в офисных зданиях с числом сотрудников более 50 актуальна вторая категория. Это означает максимальное время устранения аварии один час и надежность 0,9999. Третья категория характеризуется временем устранения аварии 24 часа и надежностью 0,9973.

Первая категория требует надежности 1 и временем устранения аварии 0.

Виды негативных воздействий в электросети

Все негативные воздействия в электросети делятся на провалы и перенапряжения.

Импульсные провалы обычно вызываются перегрузкой оконечных линий. Включение мощного потребителя, такого как кондиционер, холодильник, сварочный аппарат, вызывает кратковременную (до 1-2 с) просадку питающего напряжения на 10–20%.

Короткое замыкание в соседнем офисе или квартире может вызвать импульсный провал, в случае, если вы подключены к одной фазе.

Импульсные провалы не компенсируются подстанцией и могут вызывать сбои и перезагрузки компьютерной и другой насыщенной электроникой техники.

Постоянный провал, то есть постоянно или циклично низкое напряжение обычно вызвано перегрузкой линии от подстанции до потребителя, плохим состоянием трансформатора подстанции или соединительных кабелей. Низкое напряжение негативно отражается на работе такого оборудования как кондиционеры, лазерные принтеры и копиры, микроволновые печи.

Полный провал (блекаут), это пропадание напряжения в сети. Пропадание до одного полупериода (10 мс) должно по стандарту выдерживать любое оборудование без нарушения работоспособности. На подстанциях старого образца переключения регулятора напряжения или резерва могут достигать нескольких секунд. Подобный провал выглядит как «свет мигнул». В подобной ситуации все незащищенное компьютерное оборудование «перезагрузится» или «зависнет».

Перенапряжения постоянные — завышенное или циклично завышенное напряжение. Обычно является следствием так называемого «перекоса фаз» — неравномерной нагрузки на разные фазы трансформатора подстанции. В этом случае на нагруженной фазе происходит постоянный провал, а на двух других постоянное перенапряжение.

Перенапряжение сильно сокращает срок службы самого разного оборудования, начиная от лампочек накаливания Вероятность выхода из строя сложного оборудования при включении значительно увеличивается. Самое неприятное постоянное перенапряжение — отгорание нейтрального провода, нуля.

В этом случае напряжение на оборудовании может достигать 380 В, и это практически гарантирует выход его из строя.

Временное перенапряжение бывает импульсным и высокочастотным.

Импульсное перенапряжение может происходить при замыкании фазовых жил силового кабеля друг на друга и на нейтраль, при обрыве нейтрали, при пробое высоковольтной части трансформатора подстанции на низковольтную (до 10 кВ), при попадании молнии в кабель, подстанцию или рядом с ними. Наиболее опасны импульсные перенапряжения для электронной аппаратуры.

Высокочастотное перенапряжение характеризуется наличием в силовом кабеле паразитных колебаний высокой частоты. Может нарушить работу высокочувствительной измерительной и звукозаписывающей аппаратуры.

Способы противодействия негативным воздействиям

В нижеприведенную таблицу сведены все виды негативных воздействий в электросети и технические методы борьбы с ними.

Вид негативного воздействия Следствие негативного воздействия Рекомендуемые меры защиты
Импульсный провал напряжения Нарушение в работе оборудования содержащего микропроцессоры. Потеря данных в компьютерных системах. Качественные блоки питания. Онлайн ИБП
Постоянный провал (занижение) напряжения Перегрузка оборудования содержащего электромоторы. Неэффективность электрического отопления и освещения. Автотрансформаторные регуляторы напряжения. Импульсные блоки питания.
Пропадание напряжения Выключение оборудования. Потеря данных в компьютерных системах. Батарейные ИБП любого типа, для предотвращения потерь данных. Автономные генераторы, при необходимости обеспечения бесперебойности работы оборудования.
Завышенное напряжение Перегрузка оборудования. Увеличение вероятности выхода из строя. Автотрансформаторные регуляторы напряжения. Сетевые фильтры с автоматом защиты от перенапряжения.
Импульсные перенапряжения Нарушение в работе оборудования содержащего микропроцессоры. Потеря данных в компьютерных системах. Выход оборудования из строя. Сетевые фильтры с автоматом защиты от перенапряжения.
Высокочастотные перенапряжения. Нарушения в работе высокочувствительной измерительной и звукозаписывающей аппаратуры. Сетевые фильтры с ФНЧ. Развязывающие трансформаторы.
Перекос фаз (разница фазного напряжения) Перегрузка трехфазного оборудования. Выравнивания нагрузки по фазам. в исправности силовой кабельной сети.
Отклонение частоты сети Нарушение работы оборудования с синхронными двигателями и изделий зависящих от частоты сети. Онлайн ИБП. Замена устаревшего оборудования.

Следует отметить, что современные качественные ИБП имеют в своем составе сетевой фильтр и ограничитель напряжения. Время реакции и переключения на батарею достаточно мало для обеспечения надежной бесперебойной работы любых электронных устройств.

Использование отдельных стабилизаторов может быть оправданно при большом количестве оборудования, так как цена стабилизатора на 10 КВт примерно равна цене ИБП на 1КВт. Использование отдельного сетевого фильтра гораздо менее оправданно. ИБП не предназначены для систем, требующих непрерывного функционирования.

Если мощность такого оборудования превышает 1 КВт, оптимальным решением будет использование автономного дизельного генератора.

Источник: https://www.ixbt.com/power/ups/electric_power.shtml

Потери электроэнергии в электрических сетях: виды, причины, расчет

как уменьшить потери в линии электропередач

Потери электроэнергии в электрических сетях неминуемы, поэтому важно чтобы они не превышали экономически обоснованного уровня. Превышение норм технологического расхода говорит о возникших проблемах. Чтобы исправить ситуацию необходимо установить причины возникновения нецелевых затрат и выбрать способы их снижения. Собранная в статье информация описывает многие аспекты этой непростой задачи.

Виды и структура потерь

Под потерями подразумевается разница между отпущенной потребителям электроэнергией и фактически поступившей к ним. Для нормирования потерь и расчетов их фактической величины, была принята следующая классификация:

  • Технологический фактор. Он напрямую зависит от характерных физических процессов, и может меняться под воздействием нагрузочной составляющей, условно-постоянных затрат, а также климатических условий.
  • Расходы, затрачиваемые на эксплуатацию вспомогательного оборудования и обеспечение необходимых условий для работы техперсонала.
  • Коммерческая составляющая. К данной категории относятся погрешности приборов учета, а также другие факторы, вызывающие недоучет электроэнергии.

Ниже представлен среднестатистический график потерь типовой электрокомпании.

Примерная структура потерь

Как видно из графика наибольшие расходы связаны с передачей по воздушным линиям (ЛЭП), это составляет около 64% от общего числа потерь. На втором месте эффект коронированния (ионизация воздуха рядом с проводами ВЛ и, как следствие, возникновение разрядных токов между ними) – 17%.

Коронный разряд на изоляторе ЛЭП

Исходя из представленного графика, можно констатировать, что наибольший процент нецелевых расходов приходится на технологический фактор.

Основные причины потерь электроэнергии

Разобравшись со структурой, перейдем к причинам, вызывающим нецелевой расход в каждой из перечисленных выше категорий. Начнем с составляющих технологического фактора:

  1. Нагрузочные потери, они возникают в ЛЭП, оборудовании и различных элементах электросетей. Такие расходы напрямую зависят от суммарной нагрузки. В данную составляющую входят:
  • Потери в ЛЭП, они напрямую связаны с силой тока. Именно поэтому при передаче электроэнергии на большие расстояния используется принцип повышения в несколько раз, что способствует пропорциональному уменьшению тока, соответственно, и затрат.
  • Расход в трансформаторах, имеющий магнитную и электрическую природу ( 1 ). В качестве примера ниже представлена таблица, в которой приводятся данные затрат на трансформаторах напряжения подстанций в сетях 10 кВ.

Потери в силовых трансформаторах подстанций

Нецелевой расход в других элементах не входит в данную категорию, ввиду сложностей таких расчетов и незначительного объема затрат. Для этого предусмотрена следующая составляющая.

  1. Категория условно-постоянных расходов. В нее входят затраты, связанные со штатной эксплуатацией электрооборудования, к таковым относятся:
  • Холостая работа силовых установок.
  • Затраты в оборудовании, обеспечивающем компенсацию реактивной нагрузки.
  • Другие виды затрат в различных устройствах, характеристики которых не зависят от нагрузки. В качестве примера можно привестисиловую изоляцию, приборы учета в сетях 0,38 кВ, змерительные трансформаторы тока, ограничители перенапряжения и т.д.
  1. Климатическая составляющая. Нецелевой расход электроэнергии может быть связан с климатическими условиями характерными для той местности, где проходят ЛЭП. В сетях 6 кВ и выше от этого зависит величина тока утечки в изоляторах. В магистралях от 110 кВ большая доля затрат приходится на коронные разряды, возникновению которых способствует влажность воздуха. Помимо этого в холодное время года для нашего климата характерно такое явление, как обледенение на проводах высоковольтных линий, а также обычных ЛЭП.Гололед на ЛЭП

Учитывая последний фактор, следует учитывать затраты электроэнергии на расплавление льда.

Расходы на поддержку работы подстанций

К данной категории отнесены затраты электрической энергии на функционирование вспомогательных устройств. Такое оборудование необходимо для нормальной эксплуатации основных узлов, отвечающих за преобразование электроэнергии и ее распределение. Фиксация затрат осуществляется приборами учета. Приведем список основных потребителей, относящихся к данной категории:

  • системы вентиляции и охлаждения трансформаторного оборудования;
  • отопление и вентиляция технологического помещения, а также внутренние осветительные приборы;
  • освещение прилегающих к подстанциям территорий;
  • зарядное оборудование АКБ;
  • оперативные цепи и системы контроля и управления;
  • системы обогрева наружного оборудования, например, модули управления воздушными выключателями;
  • различные виды компрессорного оборудования;
  • вспомогательные механизмы;
  • оборудование для ремонтных работ, аппаратура связи, а также другие приспособления.

Коммерческая составляющая

Под данными затратами подразумевается сальдо между абсолютными (фактическими) и техническими потерями. В идеале такая разница должна стремиться к нулю, но на практике это не реально. В первую очередь это связано с особенностями приборов учета отпущенной электроэнергии и электросчетчиков, установленных у конечных потребителей. Речь идет о погрешности. Существует ряд конкретных мероприятий для уменьшения потерь такого вида.

К данной составляющей также относятся ошибки в счетах, выставленных потребителю и хищения электроэнергии. В первом случае подобная ситуация может возникнуть по следующим причинам:

  • в договоре на поставку электроэнергии указана неполная или некорректная информация о потребителе;
  • неправильно указанный тариф;
  • отсутствие контроля за данными приборов учета;
  • ошибки, связанные с ранее откорректированными счетами и т.д.

Что касается хищений, то эта проблема имеет место во всех странах. Как правило, такими противозаконными действиями занимаются недобросовестные бытовые потребители. Заметим, что иногда возникают инциденты и с предприятиями, но такие случаи довольно редки, поэтому не являются определяющими. Характерно, что пик хищений приходится на холодное время года, причем в тех регионах, где имеются проблемы с теплоснабжением.

Различают три способа хищения (занижения показаний прибора учета):

  1. Механический. Под ним подразумевается соответствующее вмешательство в работу прибора. Это может быть притормаживание вращения диска путем прямого механического воздействия, изменение положения электросчетчика, путем его наклона на 45° (для той же цели). Иногда применяется более варварский способ, а именно, срываются пломбы, и производится разбалансирование механизма. Опытный специалист моментально обнаружит механическое вмешательство.
  2. Электрический. Это может быть как незаконное подключение к воздушной линии путем «наброса», метод инвестирования фазы тока нагрузки, а также использование специальных приборов для его полной или частичной компенсации. Помимо этого есть варианты с шунтированием токовой цепи прибора учета или переключение фазы и нуля.
  3. Магнитный. При данном способе к корпусу индукционного прибора учета подносится неодимовый магнит.

Магнит может воздействовать только некоторые старые модели электросчетчиков

Практически все современные приборы учета «обмануть» вышеописанными способами не удастся. Мало того, подобные попытки вмешательства могут быть зафиксированы устройством и занесены в память, что приведет к печальным последствиям.

Понятие норматива потерь

Под данным термином подразумевается установка экономически обоснованных критериев нецелевого расхода за определенный период. При нормировании учитываются все составляющие. Каждая из них тщательно анализируется отдельно. По итогу производятся вычисления с учетом фактического (абсолютного) уровня затрат за прошедший период и анализа различных возможностей, позволяющих реализовать выявленные резервы для снижения потерь. То есть, нормативы не статичны, а регулярно пересматриваются.

Под абсолютным уровнем затрат в данном случае подразумевается сальдо между переданной электроэнергией и техническими (относительными) потерями. Нормативы технологических потерь определяются путем соответствующих вычислений.

Кто платит за потери электричества?

Все зависит от определяющих критериев. Если речь идет о технологических факторах и расходах на поддержку работы сопутствующего оборудования, то оплата потерь закладывается в тарифы для потребителей.

Совсем по иному обстоит дело с коммерческой составляющей, при превышении заложенной нормы потерь, вся экономическая нагрузка считается расходами компании, осуществляющей отпуск электроэнергии потребителям.

Способы уменьшения потерь в электрических сетях

Снизить затраты можно путем оптимизации технической и коммерческой составляющей. В первом случае следует принять следующие меры:

  • Оптимизация схемы и режима работы электросети.
  • Исследование статической устойчивости и выделение мощных узлов нагрузки.
  • Снижение суммарной мощности за счет реактивной составляющей. В результате доля активной мощности увеличится, что позитивно отразится на борьбе с потерями.
  • Оптимизация нагрузки трансформаторов.
  • Модернизация оборудования.
  • Различные методы выравнивания нагрузки. Например, это можно сделать, введя многотарифную систему оплаты, в которой в часы максимальной нагрузки повышенная стоимость кВт/ч. Это позволит существенно потребление электроэнергии в определенные периоды суток, в результате фактическое напряжение не будет «проседать» ниже допустимых норм.

Уменьшить коммерческие затраты можно следующим образом:

  • регулярный поиск несанкционированных подключений;
  • создание или расширение подразделений, осуществляющих контроль;
  • проверка показаний;
  • автоматизация сбора и обработки данных.

Методика и пример расчета потерь электроэнергии

На практике применяют следующие методики для определения потерь:

  • проведение оперативных вычислений;
  • суточный критерий;
  • вычисление средних нагрузок;
  • анализ наибольших потерь передаваемой мощности в разрезе суток-часов;
  • обращение к обобщенным данным.

Полную информацию по каждой из представленных выше методик, можно найти в нормативных документах.

https://www.youtube.com/watch?v=M4Fa4qrVJ_o

В завершении приведем пример вычисления затрат в силовом трансформаторе TM 630-6-0,4. Формула для расчета и ее описание приведены ниже, она подходит для большинства видов подобных устройств.

Расчет потерь в силовом трансформаторе

Для понимания процесса следует ознакомиться с основными характеристиками TM 630-6-0,4.

Параметры TM 630/6/0,4

Теперь переходим к расчету.

Итоги расчета

Источник: https://www.asutpp.ru/poteri-jelektrojenergii-v-jelektricheskih-setjah.html

Передача электроэнергии на расстояние

Весь быт современного человека тесно связан с электроэнергией. От неё работает всё: начиная от зарядных устройств телефонов и заканчивая аппаратами искусственной вентиляции лёгких. Поэтому электроэнергия должна быть легкодоступна в каждом уголке планеты.

Высокое напряжение как способ уменьшения потерь

Реальность такова, что передача электроэнергии на большие расстояния неизбежно сопровождается её потерями. Существенная часть электричества, проходя путь от генератора на электростанции до розетки бытового потребителя, превращается в тепло и расходуется на обогрев атмосферы. Однако это не снижает затрат за производство электроэнергии, поэтому конечному пользователю всё же приходится оплачивать и эти нецелевые расходы.

Уменьшить ненужные потери, соответственно, траты, позволяют следующие способы:

  1. применение высокотемпературных сверхпроводников;
  2. увеличение сечения кабелей и проводов ЛЭП;
  3. повышение напряжения в линиях передачи.

За первым способом будущее. Однако сегодня он технически неосуществим. От второго отказались на первых парах развития электроэнергетики, ведь он экономически нецелесообразен из-за лишних расходов на утолщение проводников. Применение высокого напряжения оказалось наиболее удачным методом, поэтому он используется по всему миру уже порядка ста лет.

Классификация линий электропередач

Беспроводная передача электроэнергии

Существует множество разновидностей ЛЭП. Каждый из видов заточен под свои определённые нужды и задачи. В соответствии с этим, ПУЭ регламентирует следующую классификацию воздушных линий электропередач.

По классу напряжению ЛЭП бывают:

  • низковольтные, до 1 кВ;
  • высоковольтные, свыше 1 кВ.

По назначению:

  • Межсистемные линии с напряжением от 500 кВ и выше;
  • Магистральные, 220-500 кВ;
  • Распределительные, 110-220 кВ;
  • Линии 35 кВ для питания сельхоз потребителей;
  • ЛЭП 1-20 кВ, используемые в пределах одного населённого пункта.

Род электрического тока в ЛЭП подразделяются на:

  • переменный (практически все линии);
  • постоянный ток (встречается редко, в основном 3,3 кВ контактной сети железной дороги).

Способы передачи электроэнергии

Знакомство с пиковыми и другими зонами тарификации электроэнергии

Наиболее распространены два способа передачи электроэнергии: с помощью воздушных и кабельных линий. Они отличаются между собой по дальности и среде, в которой находится проводник.

Воздушные линии – это, упрощённо, медные или алюминиевые проводники, подвешенные через изоляторы на металлические или железобетонные опоры. При таком методе возможна передача электричества на большие расстояния и между разными государствами.

Кабельная линия – прокладка проводов под землёй. Отдельные токоведущие жилы расположены, как правило, в резиновой или ПВХ изоляции. Если напряжение высокое, то имеется и броня из металлической ленты. Также она служит в качестве экрана для защиты от помех. Встречается преимущественно в пределах города или предприятия.

Дополнительная информация. Применяя кабельные линии, возможно транспортировать электроэнергию по дну водоёмов и даже морей. Это позволяет поставлять электричество на острова. Применение ЛЭП таких возможностей не подразумевает.

Схема передачи энергии от электростанции до потребителя

Что такое коммерческий учет электроэнергии

электростанция (1) вырабатывает напряжение порядка 10-12 кВ. Затем оно повышается с помощью трансформатора (2) до более высокого уровня: 35, 110, 220, 400, 500 или 1150 кВ.

После по кабельной или воздушной линии (3) энергия передаётся на расстояния от единиц до тысяч километров и попадает на понижающую подстанцию. На ней также установлен трансформатор (4), который преобразует сотни киловольт снова в 10-12 тысяч вольт. Далее следует ещё один каскад понижения до 380/220 В (5).

Это напряжение является конечным и раздаётся по потребителям (6), т.е. жилым домам, больницам и т.д.

Транспортировка электрической энергии

Трансформаторные подстанции

Для преобразования напряжения одной величины в другую служат трансформаторные подстанции. Они представляют собой огороженный забором объект, имеющий на своей территории трансформатор. Внутри него располагаются первичная и вторичная обмотки (катушки). Их электромагнитное взаимодействие позволяет с большим КПД преобразовывать энергию. На подстанцию заходят воздушные линии или кабеля с одним напряжением, а выходят с другим, как правило, более низким.

Там же располагаются всевозможные системы контроля и учёта электроэнергии и распределительное устройство (РУ). Оно предназначено для связи с другими объектами энергосистемы и является неотъемлемой частью трансформаторной подстанции. РУ позволяет отключить отдельного потребителя по стороне низкого напряжения, не обесточивая при этом всех остальных.

Пропускная способность линий электропередач

Напряжение в конце линии неизбежно ниже, чем в её начале. Вольтаж теряется на сопротивлении проводов ЛЭП. Именно эта разница напряжений уходит впустую на обогрев вселенной.

Такая проблема приводит к тому, что невозможно создать линию электропередач бесконечной длины и передать по ней неограниченную мощность. Поэтому введено понятие – пропускная способность ЛЭП. Данная характеристика в первую очередь зависит от длины линии, металла, из которого сделаны её провода и их сечения. Потери в меди менее ощутимы, чем у алюминия. Пропускная способность линии тем выше, чем толще её провода.

Потери электроэнергии

Причины потерь при передаче электрической энергии на расстояние кроются в строении вещества. Электрический ток – это направленное движение по проводнику свободных носителей зарядов. В случае с ЛЭП и кабелями их роль играют электроны.

Эти частицы, проходя по сечению провода, неизбежно сталкиваются с окружающими их атомами меди или алюминия и сообщают им часть своей кинетической энергии.

Микрочастицы металла за счёт этого удара становятся подвижнее, что и воспринимается органами чувств человека как повышение температуры.

Количество теплоты Q, выделенной в проводнике за время t и потерянной впустую, вычисляется по закону Джоуля – Ленца. Оно пропорционально квадрату протекающего в проводе тока I и его сопротивлению R:

Q = I2Rt.

Дополнительная информация. Потери электричества имеются и в трансформаторе. К самым большим из них относятся затраты энергии на создание вихревых токов в сердечнике и нагрев обмоток.

Передача электричества на дальние расстояния

Если передача электрической энергии осуществляется на дистанции в сотни километров, то используют воздушные линии. Их строительство обходится существенно дешевле, в сравнении с кабельными, укладываемыми под землю. ЛЭП способны объединять в общую сеть соседние страны. Помимо этого, они проще в эксплуатации, ведь провода находятся под открытым небом. Этот фактор упрощает осмотр технического состояния линии и позволяет заблаговременно спрогнозировать её неисправности.

Возведение ЛЭП 750 000 вольт

Постоянный ток в качестве альтернативы

Большинство из используемых сегодня в мире линий электропередач работает на переменном токе. Однако имеются исключения. В некоторых случаях применение постоянного тока оказывается более эффективным:

  • отпадает необходимость в синхронизации генераторов, работающих в разных энергосистемах;
  • сводятся к нулю потери на ёмкостное и индуктивное сопротивления кабеля;
  • снижается стоимость линии, т.к. для передачи постоянного тока достаточно всего 2 проводников;
  • возможность использования на уже построенных ЛЭП переменного тока, т.е. не нужно возводить новые магистрали;
  • снижение электромагнитного излучения, возникающего при смене направления тока.

Дополнительная информация. Большинство домашних электроприборов может работать от постоянного тока. К ним относятся лампочки, интернет роутеры, дрели, обогреватели и многое другое. Переменный ток необходим только для некоторых видов двигателей, которые в быту встречаются крайне редко.

Умение передавать электрический ток на огромные расстояния послужило решающим фактором для развития всего человечества. Однако индустрия не стоит на месте, поэтому сейчас учёные работают над тем, чтобы сделать транспортировку энергии ещё эффективнее и дешевле.

Источник: https://amperof.ru/elektroenergia/peredacha-elektroenergii-na-rasstoyanie.html

Потери в лэп

Потериэлектроэнергии в проводах зависятот силытока,поэтому при передаче её на дальниерасстояния, напряжение многократноповышают (во столько же раз уменьшаясилу тока) с помощью трансформатора,что при передаче той же мощности позволяетзначительно снизить потери.

Однако сростом напряжения начинают происходитьразличные разрядныеявления.В воздушных линиях сверхвысокогонапряжения присутствуют потери активноймощности на корону (коронныйразряд).

Эти потери зависят во многом от погодныхусловий (в сухую погоду потери меньше,а в дождь, изморось или снег эти потеривозрастают) и расщепления провода вфазах линии.

Потерина корону для линий различных напряженийимеют свои значения (для линии ВЛ 500 кВсреднегодовые потери на корону составляютоколо ΔР=9-11 кВт/км).

Таккак коронный разряд зависит отнапряжённости на поверхности провода,то для уменьшения этой напряжённостив воздушных линиях сверхвысокогонапряжения применяют расщепление фаз.То есть вместо одного провода применяютдва и более проводов в фазе. Располагаютсяэти провода на равном расстоянии другот друга. Получается эквивалентныйрадиус расщеплённой фазы, этим уменьшаетсянапряжённость на отдельном проводе,что в свою очередь уменьшает потери накорону.

Потери в лэп переменного тока

Важнойвеличиной, влияющей на экономичностьЛЭП переменного тока, является величина,характеризующая соотношение междуактивной и реактивной мощностями влинии — cosφ.

Активная мощность — часть суммарнойэнергии, прошедшей по проводам ипереданной в нагрузку; реактивнаямощность — это энергия, отразившаясяот нагрузки или искажённая нагрузкой(например, ток непропорционален напряжениюили сдвинут от него по фазе).

В радиотехникеаналогом этого явления служат стоячиеволны, а вместо cosφ применяется КСВ.

Придлине ЛЭП переменного тока болеенескольких тысяч километров наблюдаетсяещё один вид потерь — радиоизлучение.Так как такая длина уже сравнима с длинойэлектромагнитной волны частотой 50 Гц,провод работает как антенна.

Электрическая подстанция

Электри́ческаяподста́нция — электроустановка,предназначенная для приема, преобразованияи распределения электрическойэнергии,состоящая из трансформаторов илидругих преобразователей электрическойэнергии, устройств управления, распределительных ивспомогательных устройств

Устройство

Основныеэлементы электроподстанций:

  • Силовые трансформаторы, автотрансформаторы.
  • Вводные конструкции для воздушных и кабельных линий электропередачи.
  • Открытые (ОРУ) и закрытые (ЗРУ) распределительные устройства, включая:
    • Системы и секции шин;
    • Силовые выключатели;
    • Разъединители;
    • Измерительное оборудование (измерительные трансформаторы тока и напряжения, измерительные приборы);
    • Оборудование ВЧ-связи между подстанциями (конденсаторы связи, фильтры присоединения);
    • Токоограничивающие, регулирующие устройства (конденсаторные батареи, реакторы, фазовращатели и пр.).
    • Преобразователи частоты, рода тока (выпрямители).
  • Система питания собственных нужд подстанции:

    • Трансформаторы собственных нужд;
    • Щит переменного тока;
    • Аккумуляторные батареи;
    • Щит постоянного (оперативного) тока;
    • Дизельные генераторы и другие аварийные источники энергии (на крупных и особо важных подстанциях).
  • Системы защиты и автоматики:

    • Устройства релейной защиты и противоаварийной автоматики для силовых линий, трансформаторов, шин.
    • Автоматическая система управления.
    • Система телемеханического управления.
    • Система технического и коммерческого учёта электроэнергии.
    • Система технологической связи энергосистемы и внутренней связи подстанции.
  • Система заземления, включая заземлители и контур заземления.

  • Молниезащитные сооружения.

  • Вспомогательные системы:

    • Система вентиляции, кондиционирования, обогрева.
    • Система автоматического пожаротушения.
    • Система освещения территории.
    • Система охранно-пожарной сигнализации, управления доступом.
    • Система технологического и охранного видеонаблюдения.
    • Устройства плавки гололёда на воздушных линиях.
    • Системы аварийного сбора масла.
    • Системы питания маслонаполненных кабелей.
    • Бытовая, ливневая канализация, водопровод.
  • Бытовые помещения, склады, мастерские и пр.

Источник: https://studfile.net/preview/6413165/page:9/

Расчет потери электроэнергии в электрических сетях :

Актуальным вопросом в современной электроэнергетике являются потери электроэнергии, которые тесно переплетаются с финансовой составляющей. Это своего рода резерв получения дополнительной выгоды, повышение рентабельности производственного процесса. Попытаемся разобраться со всеми гранями этого вопроса и дать четкое представление о тонкостях потерь электроэнергии в сетях.

Что такое потери электрической энергии?

Под потерями электроэнергии в широком смысле следует понимать разницу между поступлениями в сети и фактическим потреблением (полезным отпуском). Расчет потерь предполагает определение двух величин, что выполняется через учет электрической энергии. Одни стоят непосредственно на подстанции, другие у потребителей.

Потери могут рассчитываться в относительных и абсолютных величинах. В первом случае исчисление выполняется в процентах, во втором – в киловатт-часах. Структура разделена на две основных категории по причине возникновения. Общие потери именуются фактическими и являются основой эффективности работы подразделения.

Где выполняется расчет?

Расчет потерь электроэнергии в электрических сетях выполняется по следующим направлениям:

  1. Для предприятий, генерирующих энергию и отдающих в сеть. Уровень зависит от технологии производства, правильности определения собственных нужд, наличия технических и коммерческих учетов. Потери генерации ложатся на коммерческие организации (включаются в стоимость) или добавляются в нормативы и фактические величины на районы или предприятия электрических сетей.
  2. Для высоковольтной сети. Передача на дальние расстояния сопровождается высоким уровнем потерь электроэнергии в линиях и силовом оборудовании подстанций 220/110/35/10 кВ. Рассчитывается путем определения норматива, а в более совершенных системах через приборы электронного учета и автоматизированных систем.
  3. Распределительные сети, где происходит разделение потерь на коммерческие и технические. Именно в этой области сложно прогнозировать уровень величины из-за фактора сложности обвязки абонентов современными системами учета. Потери при передаче электроэнергии рассчитываются по принципу поступило за минусом платы за потребленную электрическую энергию. Определение технической и коммерческой части выполняется через норматив.

Технические потери: физические причины появления и где возникают

Сущность технических потерь заключается в несовершенстве технологии и проводников, используемых в современной электроэнергетике. В процессе генерации, передачи и трансформации электроэнергии возникают физические явления, которые и создают условия утечки тока, нагрев проводников или прочие моменты. Технические потери могут возникать в следующих элементах:

  1. Трансформаторы. Каждый силовой трансформатор обладает двумя или тремя обмотками, посередине которого расположен сердечник. В процессе трансформации электроэнергии с большего на меньшего в этом элементе происходит нагрев, что и предполагает появление потерь.
  2. Линии электропередач. При транспортировке энергии на расстояния происходит утечка тока на корону для ВЛ, нагрев проводников. На расчет потерь в линии влияют следующие технические параметры: длина, сечение, удельная плотность проводника (медь или алюминий), коэффициенты потерь электроэнергии, в частности, коэффициент распределенности нагрузки, коэффициент формы графика.
  3. Дополнительное оборудование. К этой категории необходимо отнести технические элементы, которые участвуют в генерации, транспортировке, учете и потреблении электроэнергии. Величины для этой категории в основном постоянные или учитываются через счетчики.

Для каждого вида элементов электрической сети, для которой рассчитываются технические потери, имеется разделение на потери холостого хода и нагрузочные потери. Первые считаются постоянной величиной, вторые зависят от уровня пропуска и определяются для анализируемого периода, зачастую за месяц.

Коммерческие потери: основное направление повышения эффективности в электроэнергетике

Коммерческие потери электроэнергии считаются сложно прогнозируемой величиной, так как зависят от потребителей, от их желания обмануть предприятие или государство. Основой указанных проблем являются:

  1. Сезонная составляющая. В представленное понятие вкладывается недоплата физических лиц по реально отпущенной электрической энергии. К примеру, в Республике Беларусь существует 2 причины появления «сезонки» — это наличие льгот по тарифам и оплата не на 1, а на 25 число.
  2. Несовершенство приборов учетов и их неправильная работа. Современные технические средства для определения потребленной энергии значительно упростили задачу абонентской службе. Но электроника или неправильно налаженная система учета может подвести, что и становится причиной рост коммерческих потерь.
  3. Воровство, занижение показаний счетчиков коммерческими организациями. Это отдельная тема для разговора, которая предполагает различные ухищрения физических и юридических лиц по сокращению расходов на электрическую энергию. Все это сказывается на росте потерь.

Фактические потери: общий показатель

Для расчета фактических потерь необходимо сложить коммерческую и техническую составляющую. Однако реальный расчет этого показателя осуществляется по-другому, формула потерь электроэнергии следующая:

Величина потерь = (Поступления в сеть – Полезный отпуск – Перетоки в другие энергосистемы – Собственные нужды) / (Поступления в сеть – Беспотерьные – Перетоки – Собственные нужды) * 100%

Зная каждый элемент, определяют фактические потери в процентном отношении. Для вычисления требуемого параметра в абсолютных величинах необходимо выполнить расчеты только числителя.

Какие потребители считаются беспотерьными и что такое перетоки?

В представленной выше формуле используется понятие «беспотерьные», которое определяется по коммерческим приборам учета на подстанциях высокого напряжения. Предприятие или организация самостоятельно несут расходы на потери электроэнергии, которые учитываются прибором учета в точке подключения к сетям.

Что касается перетоков, то они также относятся к беспотерьным, хотя высказывание не совсем корректное. В общем понимании это электрическая энергия, которая из одной энергосистемы отправляется в другую. Учет осуществляется также с использованием приборов.

Собственные нужды и потери электрической энергии

Собственные нужды необходимо отнести к особой категории и разделу фактических потерь. Для работы электросетей требуются затраты на поддержание функционирования подстанций, расчетно-кассовых центров, административных и функциональных зданий РЭСов. Все эти величины фиксируются и отражаются в представленном параметре.

Методики расчета технических потерь на предприятиях электроэнергетики

Потери электроэнергии в электрических сетях осуществляется по двум основным методикам:

  1. Расчет и составление норматива потерь, что реализовывается через специальное программное обеспечение, куда закладывается информация по топологии схемы. Согласно последней определяются нормативные величины.
  2. Составление небалансов для каждого элемента электрических сетей. В основе этого метода лежит ежедневное, еженедельное и ежемесячное составление балансов в высоковольтной и распределительных сетях.

Каждый вариант обладает особенностями и эффективностью. Необходимо понимать, что выбор варианта зависит и от финансовой стороны вопроса.

Расчет норматива потерь

Расчет потерь электроэнергии в сетях во многих странах СНГ и Европы осуществляется с применением данной методологии. Как отмечалось выше, процесс предполагает использование специализированного софта, в котором имеются нормативные величины и топология схемы электрических сетей.

Для получения информации о технических потерях от сотрудника организации потребуется внести характеристики пропуска по фидеру активной и реактивной энергии, определить максимальные значения по активной и реактивной мощности.

Необходимо отметить, что погрешность таких моделей может доходить до 25 % только при расчете потерь электроэнергии в линии. К представленному методу следует относиться в качестве математической, примерной величине. В этом и выражается несовершенство методологии просчета технических потерь в электрических сетях.

Используемое программное обеспечение для расчета

На текущий момент существует огромное количество программного софта, который выполняет расчет норматива технических потерь. Выбор того или иного продукта зависит от стоимости обслуживания, региональности и других важных моментов. В Республике Беларусь основной программой считается DWRES.

Софт разрабатывался группой ученых и программистов Белорусского Национального Технического Университета под руководством профессора Фурсанова Н.И. Инструмент для расчета норматива потерь специфичен, обладает рядом системных достоинств и недостатков.

Для рынка России особой популярностью пользуется ПО «РПТ 3», который разрабатывался специалистами ОАО «НТЦ Электроэнергетики». Софт весьма неплохой, выполняет поставленные задачи, но также обладает рядом отрицательных сторон. Тем не менее расчет нормативных величин осуществляется в полной мере.

Составление небаланса в высоковольтных и распределительных сетях

Потери электроэнергии технического плана можно выявить через другой метод. О нем уже говорилось выше – предполагается, что все высоковольтные или распределительные сети обвязаны приборами учета. Они помогают определить величину максимально точно. Кроме этого, подобная методика обеспечивает реальную борьбу с неплательщиками, воровством и неправильное использование энергооборудования.

Следует отметить, что подобный подход, несмотря на эффективность, неприменим в современных условиях. Для этого необходимы серьезные мероприятия с большими затратами на реализацию обвязки всех потребителей электронными учетами с передачей данных (АСКУЭ).

Как сократить технические потери: способы и решения

Снизить потери в линиях, трансформаторных подстанциях помогают следующие направления:

  1. Правильно выбранный режим работы оборудования, мощностей влияет на нагрузочные потери. Именно поэтому диспетчер обязан выбирать и вести наиболее приемлемый режим работы. К представленному направлению важно отнести выбор точек нормального разрыва, расчеты загруженности трансформаторов и так далее.
  2. Замена оборудование на новое, которое обладает низкими показателями холостого хода или лучше справляются с нагрузочными потерями. Для линий электропередач предполагается замена проводов на большее сечение, использование изолированных проводников.
  3. Сокращение времени обслуживания оборудования, что ведет к снижению расхода энергии на собственные нужды.

Сокращение коммерческой составляющей потерь: современные возможности

Потери электроэнергии по коммерческой части предполагают использование следующих методов:

  1. Установка приборов учетов и систем с меньшей погрешностью. На текущий момент оптимальными считаются варианты с классом точности 0,5 S.
  2. Использование автоматизированных систем передачи информации, АСКУЭ, которые призваны убрать сезонные колебания. Контроль за показаниями является условием борьбы с воровством и занижением данных.
  3. Осуществление рейдов по проблемным адресам, которые определяются через систему балансов распределительной сети. Последнее актуально при обвязке абонентов современными учетами.
  4. Применение новых технологий по определению недоучета систем с трансформаторами тока. Специализированные приборы распознают коэффициент смещения тангенса вектора распределения электрической энергии.

Потери электроэнергии в электрических сетях – важный показатель, который обладает существенным потенциалом для коммерческих организаций энергетического бизнеса. Сокращение фактических потерь приводит к росту получаемой прибыли, а это влияет на рентабельность. В заключение необходимо отметить, что оптимальный уровень потерь должен составлять 3-5 % в зависимости от района.

Источник: https://BusinessMan.ru/raschet-poteri-elektroenergii-v-elektricheskih-setyah.html

Как предотвратить потери электроэнергии в электрических сетях: 3 показателя

Технологические потери электроэнергии при ее передаче по электрическим сетям включают в себя технические потери в линиях и оборудовании электрических сетейПотери электроэнергии в электрических сетях случаются достаточно часто и этому есть свои причины. Потерями в электросетях считаются разности между переданной электрической энергией на линиях электропередачи до учтенной, потребляемой энергией потребителя. Рассмотрим, какие бывают меры по снижению потерь.

:

Учёт и оплата всех разновидностей потерь регулируется законом. При транспортировании энергии на большие расстояния от производителя до потребителя идет потеря части электроэнергии.

Происходит это по различным причинам, одна из которых – уровень напряжения, которое потребляет обычный потребитель (220 или 380 В).

Если осуществлять транспортирование такого электронапряжения от генераторов станций напрямую, то нужно проложить электрические сети с диаметром электропровода, который обеспечит всех требуемым электротоком. Электропровода будут с очень большим сечением.

В каждой линии, в каждом элементе системы электроснабжения происходят потери энергии

Их не будет возможности разместить на ЛЭП, из-за немыслимой тяжести, прокладывание в земле на большие расстояния будет стоить очень дорого.

Для того чтобы исключить этот фактор в электросетях используют высоковольтные линии передач электроэнергии.

Передавая энергию с таким электронапряжением, она в разы растрачивается и от некачественного контакта электропроводников, которые с года повышают свое сопротивление.

Растут потери при увеличении влажности воздуха – повышается электроток утечки на изоляторах и на корону. Также повышаются потери в кабелях при сокращении параметров изолирования электропроводов. Отправил поставщик электроэнергию в поставляющую организацию.

Она соответственно должна привести параметры в необходимые показатели при передаче:

  1. Преобразовать продукцию, что была получена в электронапряжение 6-10 кВ.
  2. Развести кабелями по пунктам приема.
  3. Затем вновь преобразовать в электронапряжение в проводах 0,4 кВ.

Опять потери, трансформация при функционировании электротрансформаторов 6-10 кВ и 0,4 кВ. Обычному потребителю поставляется энергия в необходимом электронапряжении – 380-220 В. Трансформаторы имеют свой КПД и рассчитываются на определенную нагрузку. Если с мощностью переборщить или напротив, если ее будет меньше расчётной, потери в электросетях увеличатся в независимости от пожелания поставщика.

Еще один момент, это несоответствие мощности трансформатора, который преобразует 6-10 кВ в 220 В. Если потребители заберут энергии больше мощности, указанной в паспорте трансформатора, он или ломается, или не может обеспечить требуемые параметры на выходе. В результате уменьшения электронапряжения электросети электрические приборы функционируют с нарушением паспортного режима и, поэтому, повышается потребление.

От чего зависит потеря напряжения в проводах

Потребитель взял свои 220 или 380 В на электросчетчике. Теперь энергия, которая будет теряться, может на конечного потребителя.

Состоит из:

  1. Потерь на нагрев электропроводов, когда повышенное потребление из-за расчетов.
  2. Плохой электроконтакт в электроприборах коммутации электроснабжения.
  3. Емкостной и индуктивный характер электронагрузки.

Также сюда включено применение старых светоприборов, холодильного оборудования и прочих устаревших технических устройств.

Комплексные мероприятия по снижению потерь электроэнергии

Рассмотрим мероприятия по сокращению электропотерь энергии в коттедже и квартирном помещении.

Потери электроэнергии в электрических сетях — важнейший показатель экономичности, и их работы

Необходимо:

  1. Бороться, необходимо используя электропроводники соответствующие нагрузке. Сегодня в электросетях нужно следить за соответствием параметров электропроводов и мощностью, что потребляется. В ситуации невозможности корректировки эти параметры и введения к нормальным показателям, придется мириться с тем, что электроэнергия растрачивается на нагревание проводников, поэтому меняются параметры их изоляции и увеличивается риск возгорания в помещении.
  2. Плохой электроконтакт: в рубильниках – это применение инновационных конструкций с хорошими неокисляющимися электроконтактами. Любой окисел повышает сопротивление. В пускателях – эта же методика. Выключатели – система вкл./выкл. должна применять металл влагоусточивый и стойкий к высокому температурному режиму. Контакт зависит от качественного прижатия полюса к плюсу.
  3. Реактивная нагрузка. Все электрические приборы, которые не являются лампочками накаливания, электрическими плитками старого образца имеют реактивную составляющую потребления энергии. Любая индуктивность при подаче на нее тока сопротивляется течению по ней энергии за счёт развивающейся магнитной индукции. Спустя определенный период такое явление как магнитная индукция, которая не давала току идти, помогает его протеканию и добавляет в электросеть часть электроэнергии, что несет вред для общих электросетей. Развиваются особый процесс, который называется вихревые электротоки, они искажают норму показаний счетчиков и вносят негативные изменения в параметры энергии, которая поставляется. То же случается и при емкостной электронагрузке. Токи портят параметры энергии, которая поставляется потребителю. Борьба заключается в применении современных компенсаторов, в зависимости от параметров электронагрузки.
  4. Применение старых систем освещения (лампы накаливания). Их КПД имеет максимум – 3-5 %. Оставшиеся 95 % уходят на нагрев нити накаливания и в результате на нагрев окружающей среды и на излучение, которое человек не воспринимает. Поэтому совершенствовать тут не рационально. Появились прочие виды подачи света – люминесцентные лампочки, светодиоды, которые стали активно сегодня использоваться. Коэффициент полезного действия люминесцентных лампочек достигает 7 %, а у светодиодов процент близится к 20. Применение светодиодов позволяет сэкономить прямо сейчас и в процессе эксплуатирования за счёт долговечности – компенсация трат до 50 000 часов.

Также нельзя не сказать о том, что уменьшить потери электроэнергии в доме можно при помощи монтажа стабилизатора электронапряжения. Как сообщает ратуша, найти его можно в специализированных компаниях.

Как рассчитать потери электроэнергии: условия

Проще всего посчитать потери в электросети, где применяется только один тип электропровода с одним сечением, например, если дома вмонтированы только электрокабели из алюминия с сечением в 35 мм.

В жизни системы с одним типом электрокабеля почти не встречаются, обычно для снабжения зданий и сооружений применяются разные электропровода.

В такой ситуации для получения точных результатов, надо отдельно считать для отдельных участков и линий электросистемы с разнообразными электрокабелями.

Потери в электросети на трансформаторе и до него обычно не учитываются, так как индивидуальные электроприборы учёта потребляемой электроэнергии ставятся в электроцепь уже после такого спецоборудования.

Однако если вам потребуется посчитать потери на силовом трансформаторе, выполнить это несложно.

Важно:

  1. Расчёт потерь энергии в трансформаторе проводится на основе технических документов такого устройства, где будут указаны все требуемые вам параметры.
  2. Надо сказать, что любые расчёты выполняются для того чтобы определить величину максимума потерь в ходе передачи тока.
  3. При осуществлении подсчетов надо учитывать, что мощность электросети склада, производственного предприятия или другого объекта достаточна для обеспечения всех подключенных к ней энергопотребителей, то есть, система может функционировать без перенапряжения даже на максимуме нагрузки, на каждом включенном объекте.

Величину выделенной электромощности можно узнать из договора заключенного с поставщиком энергии. Сумма потерь всегда зависит от мощности электросети, от ее потребления через поттер. Чем больше электронапряжения потребляется объектами, тем выше потери.

Технические потери электроэнергии в сетях

Технические потери энергии – потери, которые вызваны физическими процессами транспортировки, распределения и трансформирования электричества, выявляются посредством расчетов. Формула, по которой выполняется расчет: P=I*U.

Технические потери электроэнергии в электрических сетях и оборудовании вычисляются путем вычитания всей отпущенной электроэнергии из всей поступившей электроэнергии в сеть электроустановки

Рассчитать просто:

  1. Мощность равняется перемножению тока на электронапряжение.
  2. Повышая напряжение при передавании энергии в электросетях можно в разы уменьшить ток, что даст возможность обойтись электропроводами с намного меньшим сечением.
  3. Подводный камень состоит в том, что в трансформаторе есть потери, которые кто-то должен компенсировать.

Технологические потери подразделяются на условнопостоянные и переменные (зависят от электронагрузки).

Что такое коммерческие потери электроэнергии

Коммерческие потери энергии – электропотери, которые определяются как разность абсолютных и технологических потерь.

Нужно знать:

  1. В идеале коммерческие электропотери энергии в электросети, должны быть нулевыми.
  2. Очевидно, но, что в реальности отпуск в электросеть, полезный отпуск и техпотери определяются с погрешностями.
  3. Их разности по факту и являются структурными элементами коммерческих электропотерь.

Они должны быть по возможности сведены к минимальному значению за счёт проведения определенных мер. Если такой возможности нет, нужно внести поправки к показаниям счетчиков, они компенсируют систематические погрешности измерений электрической энергии.

Возможные потери электроэнергии в электрических сетях (видео)

Потери электрической энергии в электросетях приводят к дополнительным расходам. Поэтому важно их контролировать.

Источник: http://6watt.ru/elektrosnabzhenie/poteri-elektroenergii-v-elektricheskikh-setyakh

Потери при передаче электроэнергии в электрических сетях

Во время транспортировки электрической энергии часть ее расходуется на сопутствующие процессы, например, на нагрев металла проводников, создание реактивных мощностей, утечки через изоляцию. Они связаны с технологией передачи электричества потребителям. Кроме технологических потерь недополучение электроэнергии может быть связано:

  • с обыкновенными хищениями;
  • ошибками приборов учета;
  • неправильными расчетами подразделениями энергосбыта.

Международные эксперты определили, что относительная величина потерянной энергии от произведенной должна быть до 5%. По статистике этот показатель у государств Западной Европы ограничен 7%, для России он колеблется в пределах 11 — 13%, а в Беларуси — 11,13%. Анализом технических потерь определено, что 78% их происходит в электросетях с напряжением 110 кВ и ниже, причем 33,5% выявлено в сетях 0,4÷10 кВ.

Правила выбора сечения тоководов

Тепловые выделения электропроводов напрямую связаны с их электрическим сопротивлением. Заниженное поперечное сечение увеличивает его и создает дополнительные затраты электроэнергии.При соединениях проводов используются разные технические приемы.

Следует понимать, что при наложении двух металлических поверхностей токопроводов через площадку их соприкосновения протекает электроток. В месте такого контакта возникает переходное сопротивление.

У линейных контактов оно меньше, чем у точеных, но больше, чем у поверхностных.

На состояние переходного сопротивления влияют:

  • вид металла соединяемых деталей;
  • чистота контактных поверхностей и качество их обработки;
  • величина «ужима» и ряд других факторов.

Электрическая энергия при транспортировке проходит сквозь огромное количество контактных соединений.

Поддержание их в хорошем, исправном состоянии снижает потери, а небрежные приемы монтажа обеспечивают затраты.

Чтобы их снизить в процессе эксплуатации проводят периодические профилактические работы, а в интервалах между ними осуществляют визуальное наблюдение за тепловыми выделениями внутри контактных соединениях с помощью тепловизоров.

Кабель АВБШв используется для подачи и распределения электроэнергии напряжением 0,6, 1 и 3 кВ с частотой 50 Гц на стационарные установки. Жилы изделия выполнены из алюминия, что снижает вес и стоимость. Эта марка устойчива к влиянию ультрафиолета, поэтому может прокладываться на открытом воздухе.

Заказать

Способы снижения потерь

Предприятия, предоставляющие услуги по передаче электроэнергии, заинтересованы в ее качестве. Оно достигается:

  • сокращением протяженности ЛЭП;
  • применением трехфазных линий по всей длине;
  • заменой открытых проводов на самонесущие изолированные конструкции;
  • использованием проводников с максимально допустимым сечением для пропуска критических нагрузок;
  • реконструкцией трансформаторного оборудования на устройства с меньшими активными и реактивными потерями;
  • дополнительным монтажом в схемы 0,4 кВ трансформаторов, снижающих протяженность ЛЭП и потери мощности в них;
  • внедрением средств автоматизации и телемеханики;
  • использованием новых средств измерения с улучшенными метрологическими характеристиками и повышением точности их обработки.

Источник: https://n-kabel.ru/article/poteri-pri-peredache-elektroenergii-v-elektri/

ЭТО ИНТЕРЕСНО:  Как измерить емкость конденсаторов
Понравилась статья? Поделиться с друзьями:
ЭлектроМастер
Как соединить греющий кабель

Закрыть