Как проводится опыт короткого замыкания трансформатора

Опыт короткого замыкания трансформатора

как проводится опыт короткого замыкания трансформатора

В электротехнике систематически проводятся испытания приборов и оборудования на устойчивость к электрическим и динамическим нагрузкам. Одной из таких проверок является опыт короткого замыкания трансформатора.

В процессе проверки ток в первичной обмотке остается со своим первоначальным значением, а вторичной обмотке устраивается искусственное короткое замыкание.

Данное мероприятие дает возможность определить номинальный ток во вторичной обмотке, потери мощности проводников, величину падения потенциала внутреннего сопротивления трансформаторного устройства. Опыты холостого хода и короткого замыкания позволяют установить не только электрические, но и магнитные потери.

Какие параметры определяются в ходе опыта

В качестве примера можно рассмотреть обычный однофазный трансформатор. При выполнении данного исследования производится специальное КЗ обмотки № 2. В обмотку № 1 напряжение подается с заниженным значением, чтобы не причинить вреда трансформатору.

Когда проводится опыт короткого замыкания однофазного трансформатора – устанавливается специальный режим, позволяющий определить несколько основных параметров:

  • Номинальное напряжение КЗ (Uk). Оно возникает в первичной обмотке, при этом, токи короткого замыкания в обеих обмотках будут равны номиналу. Процентное соотношение выражается формулой Uk = (Uk/U1H) x 100%, где U1H является напряжением первичной трансформаторной обмотки.
  • Показатели замещающей схемы. Если нет ветвей намагничивания во время проведения опыта, токи в обеих обмотках станут равны между собой. Таким образом, величина полного сопротивления КЗ определяется как Zk = U1k/I1H или Zk = √rk2 + xk2. В свою очередь, rk = r1 + r2’, а xk = x1 + x2’.
  • Сопротивление во вторичной обмотке будет равно r2 = r2’/k2, а x2 = x2’/k2.
  • Величина полного падения напряжения при КЗ (Uk) в обмотках, а также его активные (Uka) и реактивные (Ukp) компоненты в процентном соотношении. С этой целью используются следующие формулы: Uk = (I1H x Zk/U1H) x 100%; Uka = (I1H x rk/ U1H) x 100%; Ukp = (I1H x xk/ U1H) x 100%.
  • Потери короткого замыкания (Рк). Поскольку во время проведения опыта первичная обмотка подключается к пониженному напряжению, величина магнитного потока в этом случае очень мала, и ее можно не принимать в расчет. Для этого отдельно используется холостой ход. Таким образом, вся мощность, потребленная устройством, вызывает и электрические потери в обмотках. Величина мощности КЗ состоит из следующих компонентов, рассмотренных ранее: Pk = (I1H2 x r1) + (I1H2 x x2’).

Коэффициент абсорбции трансформатора

Физические процессы во время исследования

Опыт короткого замыкания проводят как специальную испытательную процедуру, для которой и предназначен трансформатор. В этом случае к обмотке № 1 подключается номинальный ток, а вторичная обмотка попадает под действие аварийного режима. В ходе проведения данного мероприятия определяется номинальный ток в обмотке № 2, потерянные мощности в проводниках и спад напряжения внутреннего сопротивления прибора.

После того как создано короткое замыкание трансформатора, ток в обмотке-2 будет ограничивать лишь ее незначительное внутреннее сопротивление. Следовательно, даже при небольшой величине ЭДС Е2, показатель тока I2 может возрасти до опасного предела. Как правило, это приводит к перегреву обмоточных проводов, разрушению изоляционного слоя и аварии трансформаторного устройства.

С учетом этих условий, опыт проводится при нулевом входном напряжении трансформатора или U1 = 0. Далее потенциал в обмотке-1 постепенно увеличивается до показателя U1k, когда ток в этом же месте подходит к своему установленному номиналу. В это же время ток в обмотке-2 измеряется амперметром А2 и условно принимается равным номиналу. Параметр U1k имеет название напряжения короткого замыкания.

Во время опыта определенное напряжение U1k в обмотке № 1 будет незначительным и составит всего 5-10% от номинала. В связи с этим, действующая величина ЭДС Е2 во вторичной обмотке также будет небольшой – в пределах 2-5%. В пропорции со значением ЭДС происходит снижение магнитного потока, а, в связи с этим, и потерь мощности в магнитопроводе Рс. Поэтому ваттметр, измеряющий мощность, покажет лишь количество потерь в проводниках Рпр.

Важную роль играет уже рассмотренное внутреннее сопротивление трансформатора, значение которого используется при составлении схемы замещения в виде векторной диаграммы. Эта диаграмма дает возможность установить снижение выходного напряжения трансформатора, благодаря падению напряжения комплексного сопротивления.

Для устройств мощностью свыше 1000 В*А, опыт холостого хода и короткого замыкания трансформатора дает возможность проконтролировать величину коэффициента трансформации. В аварийном режиме у таких приборов можно не учитывать холостой ход. Данные расчеты не годятся для трансформаторов малой мощности, поскольку их параметры существенно отличаются от мощных преобразовательных устройств, в том числе и трёхфазного прибора.

Выполнение опыта КЗ на практике

При подключении обмотки-1 трансформатора к сети и замыкании обмотки-2 на клеммах, наступит опасный режим, известный как короткое замыкание. Под влиянием токов провода обмоток выделяют большой объем теплоты, пагубно воздействующий на изоляцию. В аварийном режиме нередко возникают механические напряжения, разрушающие трансформаторные обмотки.

Во избежание разрушительного воздействия полных токов, обмотка № 2 все также замыкается накоротко, а к обмотке-1 выполняется подводка сниженного напряжения. В этом случае ток КЗ становится равным величине номинала, при котором трансформатор обычно и работает. То есть, во время проверки с ним ничего не произойдет.

Данная процедура известна как опыт короткого замыкания трансформатора, когда потенциал подключенной обмотки-1 будет равно всего лишь нескольким процентам от номинала. Оно получило название напряжения короткого замыкания.

Этот показатель у силовых устройств, в том числе у трехфазного трансформатора, равняется 5-10% от номинального значения. Полученное значение измеряется вольтметром, подключенным в цепь первичной обмотки.

Дополнительно устанавливаются амперметры для замеров номинальных токов в обеих обмотках, а ваттметр учитывает мощность потерь, выявленных во время короткого замыкания.

Ранее уже отмечалось, что величина магнитного потока трансформатора будет пропорциональна напряжению в его первичной обмотке. Во время проведения опыта КЗ его значение в сердечнике слишком маленькое, поскольку напряжение в данном режиме, во много раз ниже номинала. В связи с этим, потери в стальных пластинках можно не учитывать и условно считать основным назначением мощности перекрытие потерь в трансформаторных обмотках.

Как работает трансформатор

Используемая схема опыта короткого замыкания и ее результаты создают предпосылки для определения коэффициента мощности cos φ, активного и реактивного сопротивления обмоток.

В любых трансформаторах определяют так называемые обязательные потери. Они включают в себя потери в обмотках и стальном сердечнике. Первая часть относится к категории электрических потерь, пропорциональных квадрату тока.

Они определяются показаниями ваттметра, полученными в процессе опыта. Вторая часть представляет собой магнитные потери, связанные с частотой данной электрической сети и значением магнитной индукции.

Данные потери также определяет ваттметр, когда трансформатор вводится в режим холостого хода.

Проводимые исследования позволяют установить коэффициент полезного действия трансформатора. При его определении нужно активную мощность обмотки-2, соотнести с мощностью обмотки № 1. КПД трансформаторных устройств достаточно высокий и в некоторых случаях доходит до 98-99%.

Источник: https://electric-220.ru/news/opyt_korotkogo_zamykanija_transformatora/2019-08-04-1726

Электропитание устройств и систем связи. Курс лекций

как проводится опыт короткого замыкания трансформатора

1. Трансформаторы

3. Неуправляемые выпрямители

4. Управляемые выпрямители

6. Стабилизаторы в цепи постоянного тока

8. Инверторы напряжения

9. Корректор коэффициента мощности

10. Аккумуляторы (кислотные)

11. Промышленные выпрямительные устройства

12. Принципиальная схема двухтактного преобразователя постоянного напряжения на базе микросхемы 1169ЕУ1

13. Система электропитания

Примеры решения задач

Конструкция и принцип действия трансформатора

Трансформатор — это статический электромагнитный аппарат, преобразующий электрическую энергию напряжения переменного тока с одними параметрами в электрическую энергию с другими параметрами (частота, напряжение, фазность, форма напряжения и.т.д.).
Принцип действия трансформатора основан на законе электромагнитной индукции. Рассмотрим работу трансформатора по логической цепочке на «холостом» ходу. На рисунке изображена конструкция однофазного трансформатора,

Здесь Ф0 основной магнитный поток (магнитопровод предназначен для направления и концентрации основного магнитного потока);
ФS1ФS2 потоки рассеяния основного магнитного потока в обмотках первичной и вторичной цепей. Они зависят от сцепления обмоток (удаленности друг от друга), от расположения их на стержнях, а также от контура прохождения основного потока. Представим принцип действия трансформатора в виде логической цепочки:

1 — При подключении трансформатора к первичной цепи переменного тока возникает ток (по закону Ома), обратно пропорциональный входному сопротивлению трансформатора:

2 — При протекании тока по обмотке трансформатора, намотанной на замкнутый магнитопровод, возникает напряженность магнитного поля (H):

где F — магнитодвижущая сила, lср — средняя линия магнитопровода, W1 — число витков в первичной цепи. Магнитопровод трансформатора необходимо выполнять из ферромагнитного материала.

3 — Под действием напряженности магнитного поля Н в магнитопроводе (сердечнике) трансформатора возникает основной магнитный поток Ф0, прямо пропорциональный сечению магнитопровода (Sмаг). Магнитная индукция Вх является рабочей точкой на основной кривой намагничивания и выбирается на линейном участке, чтобы при намагничивании сердечника постоянным током магнитопровода не было захода ее в область насыщения.

4 — При прохождении основного магнитного потока по сердечнику в первичной цепи возникает ЭДС самоиндукции, а во вторичной цепи ЭДС взаимоиндукции, которые определяются по закону магнитодвижущих сил — закону Максвелла — Фарадея:

где ЭДС — это изменение потока сцепления во времени.

Логическая цепочка работы трансформатора под нагрузкой

При подключении нагрузки во вторичной цепи начинает протекать ток I2 , при этом в сердечнике возникает размагничивающий магнитный поток, противоположный по направлению к основному. Это приводит к уменьшению ЭДС в первичной цепи. В электромагнитной системе нарушается равновесие (), что приводит к возрастанию потребляемого тока из сети I1, т.е. к самобалансированию системы и поток Ф0 восстанавливается:

Отсюда следует уравнение магнитодвижущих сил (МДС):

, где — ток цепи намагничивания (ток «холостого» хода).

Уравнение ЭДС трансформатора

Рассмотрим его для низкочастотного трансформатора, в котором напряжение питания изменяется по синусоидальному закону:

При анализе работы однофазного трансформатора используют связь действующего значения ЭДС с конструктивными параметрами трансформатора:

где KФ — коэффициент формы, для низкочастотного трансформатора имеем синусоидальную форму напряжения KФ=1,11, для высокочастотного трансформатора форма напряжения — прямоугольная и KФ=1.

Источник: https://siblec.ru/telekommunikatsii/elektropitanie-ustrojstv-i-sistem-svyazi

Всё об энергетике

как проводится опыт короткого замыкания трансформатора

Трансформатор, как любое электромагнитное устройство, имеет несколько устойчивых режимов, в которых может (и должен) работать неограниченно долго.

Режимы работы трансформатора

Существует пять характерных режимов работы трансформатора:

  1. Рабочий режим;
  2. Номинальный режим;
  3. Оптимальный режим;
  4. Режим холостого хода;
  5. Режим короткого замыкания;

Рабочий режим

Режим характеризуется следующими признаками:

  • Напряжение первичной обмотки близко к номинальному значению или равно ему \(\dot{u}_1 ≈ \dot{u}_{1ном}\);
  • Ток первичной обмотки меньше своего номинального значения или равен ему \(\dot{i}_1 ≤ \dot{i}_1ном\).

В рабочем режиме эксплуатируются большинство трансформаторов. Например, силовые трансформаторы работают с напряжениями и токами обмоток отличными от номинальных. Так происходит из-за переменчивого характера их нагрузки.

Измерительные, импульсные, сварочные, разделительные, выпрямительные, вольтодобавочные и другие трансформаторы, также обычно эксплуатируются в рабочем режиме просто из-за того, что напряжение сети к которой они подключены отличается от номинального.

Номинальный режим работы

Характерные признаки режима:

  • Напряжение первичной обмотки равно номинальному \(\dot{u}_1 = \dot{u}_{1ном}\);
  • Ток первичной обмотки равен номинальному \(\dot{i}_1 = \dot{i}_{1ном}\).

Номинальный режим работы является частным случаем рабочего режима. В таком режиме могут работать все трансформаторы, но как правило, с бóльшими в сравнении с рабочим режимом потерями и как следствие, с меньшим КПД (коэффициентом полезного действия). Из-за этого при эксплуатации трансформатора его избегают.

Оптимальный режим работы

Режим характеризуется условием:

\begin{equation} k_{нг} = \sqrt{P_{хх}\over P_{кз}} \end{equation}

Где \(P_{хх}\) — потери холостого хода;    \(P_{кз}\) — потери короткого замыкания;

    \(k_{нг}\) — коэффициент нагрузки трансформатора, определяемый по формуле:

\begin{equation} k_{нг} = {I_2\over I_{2ном}} \end{equation}

Где \(P_2\) — ток нагрузки вторичной обмотки;
    \(P_{2ном}\) — номинальный ток вторичной обмотки.

В оптимальном режиме работы трансформатор работает с максимальным КПД, поэтому выражение (1) по существу представляет собой условие максимального КПД [2, с.308] (Смотри «Трансформаторы. Оптимальный режим работы»).

Режим холостого хода

Характерные признаки режима:

  • Вторичная обмотка трансформатора разомкнута или к ней подключена нагрузка с сопротивлением гораздо большим сопротивления номинальной нагрузки обмотки(1) трансформатора;
  • К первичной обмотке приложено напряжение \(\dot{u}_{1хх} = \dot{u}_{1ном}\);
  • Ток вторичной обмотки \(\dot{i}_2 ≈ 0\) (для трехфазного трансформатора — \(\dot{i}_{2ф} ≈ \dot{i}_{2л} ≈ 0\).

На рисунке 1 изображена схема опыта холостого хода однофазного, а на рисунке 2 — трехфазного двухобмоточных трансформаторов.

Рисунок 1 — Схема опыта холостого хода однофазного двухобмоточного трансформатора

Рисунок 2 — Схема опыта холостого хода трехфазного двухобмоточного трансформатора

По существу в режиме холостого хода трансформатор представляет собой катушку на магнитопроводе, к которой подключен источник напряжения. Режим холостого хода является рабочим для трансформаторов напряжения. Кроме того, этот режим служит для определения тока \(i_х\), мощности \(ΔQ_хх\) холостого хода и ряда других параметров [2, c. 291][3, с. 207] (смотри «Опыт холостого хода трансформатора»).

    Примечание:
  1. Под сопротивлением номинальной нагрузки обмотки понимается величина \(R_{Нном}\), равная отношению номинального напряжения обмотки \(U_{ном}\) к её номинальному току обмотки \(I_{ном}\)

Режим короткого замыкания

Режим короткого замыкания характеризуется:

  • Вторичная обмотка замкнута накоротко или к ней подключена нагрузка сопротивлением гораздо меньшим внутреннего сопротивления трансформатора;
  • К первичной обмотке приложена такая величина напряжения \(\dot{u}_1\), что ток первичной обмотки равен её номинальному току \(\dot{i}_1 = \dot{i}_{1ном}\)
  • Напряжение вторичной обмотки \(\dot{u}_2 = 0\) (для трехфазного трансформатора — \(\dot{u}_{2ф} = \dot{u}_{2л} = 0\).

Схема опыта короткого замыкания изображена на рисунке 3 для однофазного, а на рисунке 4 — для трехфазного двухобмоточных трансформаторов.

Рисунок 3 — Схема опыта короткого замыкания однофазного двухобмоточного трансформатора

Рисунок 4 — Схема опыта короткого замыкания трехфазного двухобмоточного трансформатора

Режим короткого замыкания является рабочим режимом для трансформаторов тока и сварочных трансформаторов, в тоже время являясь аварийным для других трансформаторов. Также он используется для определения напряжения \(u_к\), мощности \(ΔP_кз\) короткого замыкания и других параметров трансформатора [2, c. 294][3, с. 209] (смотри «Опыт короткого замыкания трансформатора»).

Список использованных источников

  1. Бессонов, Л.А. Теоретические основы электротехники: учебник / Л.А. Бессонов — Москва: Высшая школа, 1996 — 623 с.
  2. Вольдек, А.И. Электрические машины: учебник для студентов вузов / А.И. Вольдек — СПб.: Энергия, 1978 — 832 с.
  3. Касаткин А.С. Электротехника: учебное пособие для вузов / А.С. Касаткин, М.В. Немцов — Москва: Энергоатомиздат, 1995 — 240 с.

Источник: https://AllOfEnergy.ru/16-transformatory-rezhimy-raboty

Опыт холостого хода трансформатора

> Теория > Опыт холостого хода трансформатора

Производительность трансформатора возможно прогнозировать, зная эквивалентные параметры схемы. Эти величины устанавливаются в опытах холостого хода и короткого замыкания трансформатора, которые осуществляются без фактической нагрузки. Причем испытания дают более точный результат, в отличие от тестирования нагруженного аппарата.

В соответствии с полученными цифрами в дальнейшем легко определяется трансформаторная эффективность при любом мощностном показателе и любом нагрузочном токе.

Опыт холостого хода

С помощью тестирования возможно установить:

  • коэффициент трансформации;
  • каким образом ток, мощность, мощностной коэффициент cosφ холостого хода зависят от подаваемого напряжения;
  • мощностные потери в стальном магнитопроводе.

Из самого названия опыта следует, что он осуществляется, когда выводы вторичной обмотки остаются открытыми, а входное питание подается со стороны высокого напряжения. Применяется и обратная схема с подведением питания со стороны НН и размыканием выводов первичной обмотки.

Опыт холостого хода трансформатора выполняется путем подключения выбранной обмотки к источнику питания на переменном токе через различные приборы: амперметр, вольтметр, ваттметр. С целью установления коэффициента трансформации с другой стороны также подсоединяется вольтметр. Во время испытания подаваемое напряжение можно изменять. Как правило, его регулирование происходит в диапазоне 0,6-1,1 от номинального.

У ненагруженного аппарата первичный ток очень низкий – 3-5 % от Iн. Потери в проводах трансформаторной обмотки несущественны.

Важно! Трансформатор в режиме х.х. работает при Uн, создаваемый магнитный поток в стальном магнитопроводе соответствует самым высоким значениям. Практически полная энергия потребления используется на нагрев сердечника.

Измерения для вычисления коэффициента трансформации

  1. После подачи питающего напряжения фиксируются синхронно показания с двух вольтметров. Затем коэффициент трансформации подсчитывается в соответствии с формулой:

К = U1/U2.

Для трехфазных аппаратов снимают показания фазных или линейных напряжений;

  1. При соединении обмоток трехфазных аппаратов ∆/Y и Y/∆ измерение фазного коэффициента производят, подавая напряжение на одну фазу и по очереди закорачивая другие. На стороне треугольника одну фазу закорачивают, а на остающиеся подают питание. Вычисленный показатель фазного коэффициента нужно умножить на 2, если напряжение подается на Y, и поделить на 2, если на ∆.

Важно! Значение фазного коэффициента рассчитывается, когда наблюдаются значительные отклонения линейного показателя.

Определение потерь

Графические характеристики холостого хода (х.х.) строятся, исходя из нескольких считываемых с приборов значений тока, напряжения и мощности в процессе регулировании напряжения. Количественные значения тока для аппаратов с низкими мощностными показателями не превышают 10% от номинальных величин, а для устройств большой мощности – 2%.

Формула для расчета коэффициента мощности без нагрузки:

cosφ = P/I x U.

Важно! В режиме х.х. cosφ составляет 0,2-0,3.

Мощностной показатель, замеряемый ваттметром, – это мощность потерь в стальном сердечнике.

Также можно определить:

  • намагничивающую составляющую тока х.х.:

Im = I x sinφ

  • активную часть тока х.х.:

Ia = I x cosφ

  • реактивное сопротивление:

X = U/Im

  • сопротивление, представляющее активные потери в магнитопроводе:

R = U/Ia.

Опыт короткого замыкания

Тестирование заключается в подсоединении обмотки ВН к питающему источнику через вольтметр, амперметр, ваттметр. Выводы обмотки НН закорачиваются. Второе наименование эксперимента – низковольтное тестирование. При короткозамкнутой вторичной обмотке и Uн значение потребляемого тока высоко, учитывая маленькое сопротивление обмотки. Это может вызвать значительный нагрев и повреждение аппарата.

Важно! Чтобы ограничить ток, обмотка ВН должна быть под низким U, достаточным для создания в ней Iн. Это значение U именуется Uкз (напряжение короткого замыкания). Uкз находится в пределах пяти процентов от Uн.

При Iн регистрируются данные вольтметра и ваттметра.

В данном эксперименте рассчитываются:

  • активное, реактивное, общее сопротивление обмоточных проводов;
  • потери в меди.

Важно! На намагничивание сердечника влияет напряжение, следовательно, мощностные потери в нем допустимо не учитывать из-за его малого значения, и на ваттметре отобразится показатель потерь в меди.

Мощностные потери, которые считываются с ваттметра, определяются по формуле:

P = I² x R.

На основании снятых показаний производятся расчеты:

  • активное сопротивление обмоточных проводов – R = P/I²;
  • общее сопротивление – Z = U/I;
  • реактивное сопротивление – X = √ (Z² — R²)*
  • мощностной коэффициент к. з. – cosφ = P/ U x I;
  • U*кз = (Z x I/U) x 100%. Этот показатель в процентном выражении указан в техпаспорте аппарата.

Расчет КПД трансформатора

Трансформатор имеет два вида главных потерь: в стальном сердечнике и в меди. Они выделяются в виде тепла. Из-за потерянной энергии выходная мощность устройства не равна мощности потребления.

Эффективность трансформатора, или КПД, вычисляется по формуле:

η = выходная мощность в кВт/потребляемая мощность в кВт =

выходная мощность/(выходная мощность + потери в сердечнике + потери в меди),

или η = Pвых/(Рвых + Рхх + Ркз), где Рхх и Ркз определяются из опытов х.х. и к.з.

Напряжение к.з. – важный показатель в технических характеристиках трансформатора. По нему определяют, можно ли аппараты включать на параллельную работу, рассчитывают вторичное U при разной нагрузке.

Источник: https://elquanta.ru/teoriya/opyt-kholostogo-khoda-transformatora.html

Испытание мощных трансформаторов и реакторов — Опыт короткого замыкания

Опыт короткого замыкания (КЗ) служит для проверки потерь и напряжения КЗ.

Опытом КЗ называют испытание, при котором одну из обмоток трансформатора, обычно низшего напряжения, замыкают накоротко, а другую питают от источника переменного (периодического) тока при номинальной частоте (допустимое отклонение частоты от номинальной не более 1%) и пониженном (против номинального) напряжении при разомкнутых остальных обмотках и при токах в паре обмоток, не превышающих существенно их номинальные значения [Л. 2-1].

Напряжение, которое нужно подвести при опыте КЗ к одной из обмоток пары, чтобы в этой обмотке установился ток, соответствующий меньшей из номинальных мощностей обмоток пары, называют напряжением КЗ и выражают в процентах номинального напряжения питаеМОй обмотки

Потери, измеренные в указанных условиях и приведенные к расчетной температуре, называют потерями КЗ. Для двухобмоточного трансформатора понятие «потери и напряжение КЗ пары обмоток» совпадает с понятием «потери и напряжение КЗ трансформатора». Исключением является трансформатор с обмоткой ПН, состоящей из двух или большего числа гальванически не связанных частей, который согласно [Л.

2-1] можно рассматривать как многообмоточный трансформатор. Для трехобмоточного трансформатора проводят опыт КЗ для. трех пар обмоток: ВН и СП; ВН и НН; СН и НН, а для трансформатора о расщепленной на две части обмоткой НН (НН1 и НН2) проводят опыт для следующих пар обмоток: ВН и HH1; ВН и НН2; HH1 и НН2.

За расчетную условную температуру, к которой должны быть приведены потери и напряжения КЗ, принимают для всех масляных и сухих трансформаторов с изоляцией классов нагревостойкости А, Е, В 75°С [Л. 1-3]. Данные опыта КЗ необходимы в следующих случаях: 1) определение превышения температур масла и обмоток трансформатора при испытании на нагрев (гл. 12); 2) расчет или испытание трансформатора на стойкость при КЗ; 3) определение к. п. д.

трансформатора; 4) расчет и определение возможности параллельной работы данного трансформатора с другими; 5), расчет изменения вторичного напряжения трансформатора при нагрузке.

Потери и напряжение КЗ являются величинами, определяемыми для каждого отдельного трансформатора, они зависят от его типа. Их числовые значения и допуски даются в стандартах или технических условиях на трансформаторы. Так, для трансформаторов общего назначения класса напряжения 330 кВ эти значения указаны в ГОСТ 17545-72 [Л. 7-1].

б) Общие условия испытания

При операционных или специальных электромагнитных испытаниях методом КЗ опыт производят после второй сборки трансформатора с целью определения потерь и напряжения КЗ без бака или измерения полей рассеяния в различных местах активной части трансформатора. При приемо-сдаточных испытаниях опыт КЗ производят, на собранном и залитом маслом трансформаторе.

При квалификационных и периодических испытаниях на нагрев методом КЗ трансформатор собирается полностью вместе с системой охлаждения (гл. 12). Результаты измерения потерь и напряжения КЗ практически не зависят от того, с какой стороны подводится питание.

Поэтому из соображений удобства испытания на двухобмоточных трансформаторах замыкают накоротко обмотку НН, а питание подводят к обмотке ВН. Па трехобмоточных трансформаторах при опыте КЗ пары обмоток ВП и СН напряжение подают на обмотку СН при замкнутой накоротко обмотке ВН.

Перед опытом КЗ должно быть обеспечено надежное замыкание накоротко соответствующей обмотки, а также зажимов всех вторичных обмоток ТТ, встроенных в трансформатор. Замыкание вводов замыкаемой накоротко обмотки следует делать как можно тщательнее, применяя короткие медные провода или шины, сечение которых должно быть не менее сечения токоведущей шпильки или шины ввода этой обмотки.

Согласно [Л. 1-3] при испытании каждого первого образца трансформаторов данного типа плотности тока в подводящих проводах и в проводах, применяемых для выполнения КЗ обмоток, при проведении опытов не должны быть более 1,8 в медных и 1,2 А/мм2 в алюминиевых.

При приемо-сдаточных испытаниях опыт КЗ производят на ступени номинального напряжения, а при квалификационных и периодических испытаниях, кроме того, на ступенях максимального и минимального напряжения обмоток.

Перед опытом устройства переключения ответвлений обмоток должны быть установлены на требуемые ступени, а их приводы должны быть застопорены. При неправильной установке приводов устройств, например ПБВ, между подвижными и неподвижными контактами переключателя может образоваться небольшой зазор.

Напряжение КЗ при опыте может оказаться достаточным для пробоя зазора между контактами, а возникающая между ними электрическая дуга может вызвать повреждение (оплавление) контактов.

в) Потери КЗ

Активную мощность Ркϑ, измеренную при опыте КЗ с температурой обмоток ϑ, СС, принято считать условно (для удобства расчетов) состоящей из следующих слагаемых: 1) основных потерь в обмотках и других токоведущих частях трансформатора Σ, определяемых током данной обмотки или токоведущей части и ее электрическим сопротивлением, измеренным при постоянном токе; 2) добавочных потерь в опыте КЗ Рдобϑ, определяемых как разность потерь Ркϑ— Σ, измеренных при определенном токе в опыте КЗ, и основных потерь в токоведущих частях, определенных при том же токе. Добавочные потери при опыте КЗ имеют две слагаемые: а) потери в токоведущих частях, вызванные полем рассеяния; б) потери от гистерезиса и вихревых токов, возникающие в металлических элементах конструкций трансформатора от воздействия поля рассеяния. Кроме того, в добавочные потери могут входить потери от циркулирующих токов, наведенных полем рассеяния и замыкающихся в параллельно соединенных ветвях обмоток трансформатора. Согласно (Л. 1-31) основные потери в обмотках определяют вычислением, исходя из данных измерения электрического сопротивления обмоток постоянному току. Для однофазного трансформатора эти потери равны, Вт:

(7-2) где I1-2 — номинальные токи обмоток, участвующих в опыте; r1ϑ, r2ϑ — электрические сопротивления постоянному току этих обмоток при температуре ϑ, °G.
У трехфазного трансформатора основные потери пары обмоток, участвующих в опыте, вычисляются по формулам:

где I1, I2 —линейные токи трансформатора; r — междуфазные электрические сопротивления обмоток, измеренные на линейных вводах при температуре ϑ, °С; Iф1, Iф2 —фазные токи обмоток; rф1ϑ, rфϑ2 — фазные сопротивления обмоток при температуре °С.

При подсчете основных потерь в автотрансформаторах ток последовательной обмотки принимается равным току обмотки ВН, а ток общей обмотки — разности токов СН и ВН. Междуфазное электрическое сопротивление при соединении фаз в треугольник равно:

.*

а при соединении в звезду: Добавочные потери Рдобϑ определяют вычитанием из потерь КЗ Ркϑ потерь в обмотках Σ, вычисленных по (7-2) или (7-3). Следовательно,

(7-4)

Таким образом, измерение потерь КЗ требуется, по существу, для определения добавочных потерь, так как основные потери в обмотках легко определяется вычислениями по данным измерений электрического сопротивления обмоток. г) Мощность, требуемая для опыта КЗ Полная мощность SK, потребляемая трансформатором при опыте КЗ в номинальных условиях, равна, МВ-А: (7-5) где Рн — номинальная мощность испытываемого трансформатора, МВ-А; % — напряжение КЗ, %. Активная мощность Рк, необходимая для опыта КЗ, и коэффициент мощности нагрузки φн связаны соотношением: (7-6) где Рк — потери КЗ, кВт; Рн — номинальная мощность трансформатора, МВ-А; ик — напряжение КЗ, %.

В табл. 7-1 приведены значения cosφ и SK при опытах КЗ трехфазных двухобмоточных трансформаторов класса 330 кВ, вычисленные по данным ГОСТ 17545-72 [Л. 7-1].

Коэффициент мощности cosφK и полная мощность SK при опытах КЗ трансформаторов класса 330 кВ
Мощность источника питания, например испытательного генератора 50 Гц, должна быть больше мощности, требуемой для опыта КЗ, так как не всегда можно использовать генератор при его номинальном токе и напряжении для получения необходимого диапазона токов и напряжений, даже с применением промежуточного трансформатора. Кроме того, испытываемый трансформатор может иметь напряжение КЗ, большее, чем указано и табл. 7-1, например трансформаторы класса 500 кВ по ГОСТ 17544-72 [Л. 5-1], при этом с положительным допуском + 10% согласно ГОСТ 11677-75 [Л. 1-1].

Из табл. 7-1 следует, что активная мощность КЗ Рн весьма мала по сравнению с полной мощностью SK. Поэтому измерение потерь КЗ мощных трансформаторов имеет специфические особенности (§ 5-5).

Источник: https://forca.ru/knigi/arhivy/ispytanie-moschnyh-transformatorov-i-reaktorov-25.html

Режим холостого хода трансформатора

Одно из наиболее используемых электротехнических устройств – трансформатор. Данное оборудование используется для изменения величины электрического напряжения. Рассмотрим особенности режима холостого хода трансформатора, с учётом правил определения характеристик для различных видов устройств.

Трансформатор состоит из первичной и вторичной обмоток, расположенных на сердечнике. При подаче напряжения на входную катушку, образуется магнитное поле, индуцирующее ток на выходной обмотке. Разница характеристик достигается, благодаря различному количеству витков в катушках входа и выхода.

Принцип работы трансформатора

Что такое режим холостого хода

Под режимом холостого хода понимают состояние устройства, при котором во время подачи переменного электротока на входную катушку выходная находится в разомкнутом состоянии. Данная ситуация характерна для агрегата, подключённого к электросети, при условии, что нагрузку к выходному контуру ещё не включили.

Режим короткого замыкания

В процессе эксперимента можно найти:

  • электроток холостого хода (замеряется амперметром) – обычно его значение невелико, не больше 0,1 от номинального показателя тока первой обмотки;
  • мощность, теряемую в магнитопроводе прибора(или другими словами потери в стали);
  • показатель трансформации напряжения – примерно равен значению в первичной цепи, деленному на таковое для вторичной (оба значения – данные вольтметров);
  • по результатам замеров силы тока, мощности и напряжения первичной электроцепи можно высчитать коэффициент мощности: мощность делят на произведение двух других величин.

Как проводится опыт холостого хода

При проведении опыта холостого хода появляется возможность определить следующие характеристики агрегата:

  • коэффициент трансформации;
  • мощность потерь в стали;
  • параметры намагничивающей ветви в замещающей схеме.

Для опыта на устройство подаётся номинальная нагрузка.

Также читайте:  Почему моргает светодиодная лампочка при выключенном свете

При проведении опыта холостого хода и расчёте характеристик на основе данной методики необходимо учитывать разновидность устройства.

В данном состоянии трансформатор обладает нулевой полезной мощностью по причине отсутствия на выходной катушке электротока. Поданная нагрузка преобразуется в потери тепла на входной катушке I02×r1 и магнитные потери сердечника Pm. По причине незначительности значения потерь тепла на входе, их в большинстве случае в расчёт не принимают. Поэтому общее значение потерь при холостом ходе определяется магнитной составляющей.

Далее приведены особенности расчёта характеристик для различных видов трансформаторов.

Для однофазного трансформатора

Опыт холостого хода для однофазного трансформатора проводится с подключением:

  • вольтметров на первичной и вторичной катушках;
  • ваттметра на первичной обмотке;
  • амперметра на входе.

Приборы подключаются по следующей схеме:

Для определения электротока холостого хода Iо используют показания амперметра. Его сравнивают со значением электротока по номинальным характеристикам с использованием следующей формулы, получая итог в процентах:

Iо% = I0×100/I10.

Чтобы определить коэффициент трансформации k, определяют величину номинального напряжения U1н по показаниям вольтметра V1, подключённого на входе. Затем по вольтметру V2 на выходе снимают значение номинального напряжения U2О.

Коэффициент рассчитывается по формуле:

K = w1/w2 = U1н/ U2О.

Величина потерь составляет сумму из электрической и магнитной составляющих:

P0 = I02×r1 + I02×r0.

Но, если пренебречь электрическими потерями, первую часть суммы можно из формулы исключить. Однако незначительная величина электрических потерь характерна только для оборудования небольшой мощности. Поэтому при расчёте характеристик мощных агрегатов данную часть формулы следует учитывать.

Потери холостого хода для трансформаторов мощностью 30-2500 кВА

Для трёхфазного трансформатора

Трёхфазные агрегаты испытываются по аналогичной схеме. Но напряжение подаётся отдельно по каждой фазе, с соответствующей установкой вольтметров. Их потребуется 6 единиц. Можно провести опыт с одним прибором, подключая его в необходимые точки поочерёдно.

Также читайте:  Переключение без возбуждения — ПБВ трансформатора

При номинальном напряжении электротока обмотки более 6 кВ, для испытания подаётся 380 В. Высоковольтный режим для проведения опыта не позволит добиться необходимой точности для определения показателей. Кроме точности, низковольтный режим позволяет обеспечить безопасность.

Применяется следующая схема:

Работа аппарата в режиме холостого хода определяется его магнитной системой. Если речь идёт о типе прибора, сходного с однофазным трансформатором или бронестержневой системе, замыкание третьей гармонической составляющей по каждой из фаз будет происходить отдельно, с набором величины до 20 процентов активного магнитного потока.

В результате возникает дополнительная ЭДС с достаточно высоким показателем – до 60 процентов от главной. Создаётся опасность повреждения изолирующего слоя покрытия с вероятностью выхода из строя аппарата.

Предпочтительнее использовать трехстержневую систему, когда одна из составляющих будет проходить не по сердечнику, с замыканием по воздуху или другой среде (к примеру, масляной), с низкой магнитной проницаемостью. В такой ситуации не произойдёт развитие большой дополнительной ЭДС, приводящей к серьёзным искажениям.

Для сварочного трансформатора

Для сварочных трансформаторов холостой ход – один из режимов их постоянного использования в работе. В процессе выполнения сварки при рабочем режиме происходит замыкание второй обмотки между электродом и металлом детали. В результате расплавляются кромки и образуется неразъёмное соединение.

После окончания работы электроцепь разрывается, и агрегат переходит в режим холостого хода. Если вторичная цепь разомкнута, величина напряжения в ней соответствует значению ЭДС. Эта составляющая силового потока отделяется от главного и замыкается по воздушной среде.

Чтобы избежать опасности для человека при нахождении аппарата на холостом ходу, значение напряжения не должно превышать 46 В. Учитывая, что у отдельных моделей значение данных характеристик превышает указанное, достигая 70 В, сварочный агрегат выполняют со встроенным ограничителем характеристик для режима холостого хода.

Блокировка срабатывает за время, не превышающее 1 секунду с момента прерывания рабочего режима. Дополнительная защитная мера – устройство заземления корпуса сварочного агрегата.

Меры по снижению тока холостого хода

Ток при нахождении трансформатора в режиме холостого хода возникает, благодаря конструктивным особенностям сердечника. Для ферромагнитного материала, попавшего в электрическое поле переменного тока, характерно наведение вихревых индуктивных токов Фуко, вызывающих нагревание данного элемента.

Чтобы снизить вихревые токи, сердечник изготавливают не в виде цельной детали, а набирают из пакета пластин небольшой толщины. Между собой пластины изолируются. Дополнительная мера – изменение свойств самого материала, позволяющее увеличить порог магнитного насыщения.

Чтобы не допустить разрыва магнитного потока с возникновением поля рассеивания, пластины тщательно подгоняют в процессе набора. Отдельные элементы шлифуют, с получением гладкой, идеально прилегающей поверхности.

Также потери снижаются за счёт более полного заполнения окна магнитопровода. Это позволяет обеспечить оптимальные показатели массы и габаритов агрегата.

Холостой ход трансформатора – режим, при котором можно рассчитать важные характеристики. Это проводится для оборудования, находящегося в эксплуатации и на стадии проектирования.

Источник: https://OFaze.ru/teoriya/holostoj-hod-transformatora

Трансформаторы. Режимы работы и рабочие характеристики

08.12.2018

В первой части нашей статьи мы рассмотрели устройство трансформатора, принцип действия и виды трансформаторов. Теперь поговорим о них более детально.

Холостой ход однофазного трансформатора

Приведенные при рассмотрении принципа действии трансформа­тора соотношения справедливы лишь для идеального трансформатора, в котором пренебрегают сопротивлениями обмоток и потерями в сердечнике и считают, что магнитный поток замыкается только по сердечнику.

В реальных условиях необходимо учитывать падения напряжения в обмотках и фактическую картину распределения магнитных полей.

В частности, при холостом ходе МДС F0 кроме основного магнитного потока взаимоиндукции Ф0, замыкающегося по сердечнику, создает магнитный поток рассеяния Фрс1, который замыкается, в основном, по воздуху и сцепляется только с первичной обмоткой (рис. 1).

Рис. 1 — Холостой ход однофазного трансформатора

Под действием этого магнитного потока в первичной обмотке индуктируется ЭДС самоиндукции ерс1, действующее значение которой обычно рассчитывают по соотношению

где хрс1 — индуктивное сопротивление рассеяния первичной обмотки.

Для упрощения записи это сопротивление часто обозначают просто х1  Оно равно

где L1 — индуктивность рассеяния, определяемая по специальным формулам.

Таким образом, реально существующий магнитный поток рассеяния Фрс1 первичной обмотки и соответствующая ему ЭДС Ерс1 учитываются путем введения некоторого индуктивного сопротивления рассеяния х1, падение напряжения на котором уравновешивает ЭДС, т.е. в векторной форме равенство

записывают в виде

Такой подход значительно упрощает анализ и расчет режимов работы трансформатора. Сопротивление х1 практически постоянно, а величина Ерс1 пропорциональна току первичной обмотки.

Полное сопротивление первичной обмотки, кроме сопротивления х1 учитывает также активное сопротивление r1, т.е.

Электрическая схема замещения фазы первичной обмотки трансформатора на холостом ходу полностью аналогична схеме замещения катушки со стальным сердечником (рис. 2).

Рис. 2 — Электрическая схема замещения фазы трансформатора на холостом ходу

Уравнение электрического равновесия трансформатора для режима холостого хода может быть записано в виде

или

Таким образом, подводимое к первичной обмотке напряжение уравновешивается ЭДС самоиндукции Е10 и падением напряжения на сопротивлениях r1 и х1 обмотки. Поскольку падение напряжения  достаточно мало, последнее уравнение для режима холостого хода часто записывают в виде

Векторная диаграмма трансформатора в режиме холостого хода является графической иллюстрацией и решением уравнений

Векторы как это следует из уравнений

отстают от вектора Фом на 90° (рис.3). Величина напряжения U20 =Е20 отличается от Е10 в отношении коэффициента трансформации. Ток холостого хода I0 не синусоидален и его представляют в виде двух составляющих: I0а — активной, определяющей потери энергии в стали сердечника и в обмотке; I0р — реактивной, необходимой для создания МДС F0 и потоков Ф0 и Фрс1.

Рис. 3 — Векторная диаграмма холостого хода трансформатора

Таким образом, можно записать

Обычно I0а 0.

Рис. 4 — Нагрузочный режим однофазного трансформатора

Это основной режим, при котором вторичный ток изменяется в пределах 0 0, ?2 = 0  и ?2 < 0, а также геометрическое место концов вектора при изменении угла ?2  пределах :

Построение упрощенных диаграмм производятся следующим образом: из точки 0 как из центра проводится дуга окружности радиусом, равным в принятом масштабе величине напряжения ; под углом ?2 проводятся направления вектора вторичного напряжения ; во всех случаях нагрузки треугольник короткого замыкания распо­лагается таким образом, чтобы вершина А была на дуге  , вер­шина С — на направлении вектора ; а катет ВС совпадал с направлением вектора тока .

Рис. — 12.  Упрощенная векторная диаграмма приведенного  трансформатора при различных по характеру нагрузках

Точки С, С1 и C2 определяют величину приведенного вторичного напряжения при соответствующем значении ?2 . Если треугольник ABC поместить в положение 0 B’ C’, то дуга, проведенная из вершины С радиусом, равным , пройдет через точки С, С1 и C2 и является, таким образом, геометрическим местом конца вектора напряжения  .Из рис. 12 хорошо видно, что при активно-индуктивной (?2 > 0) и чисто активной нагрузке (?2 = 0) приведенное вторичное напряжение меньше первичного напряжения  .

При активно-емкостной нагрузке (?2 < 0) вторичное напряжение может стать даже больше первичного.

Физически это объясняется следующим образом. Реактивная мощность, необходимая для создания магнитного поля взаимоиндукции определяется, главным образом, реактивным сопротивлением рассеяния xk. При активно-емкостной нагрузке эта реактивная мощность может забираться от нагрузки и при определенной величине емкости в нагрузке избыток реактивной мощности отдается в первичную сеть. При этом растет ЭДС:

что приводит к перевозбуждению трансформатора, т.е. к возрастанию потока и увеличению напряжения .

Внешняя характеристика трансформатора

Внешней характеристикой трансформатора называют зависимость:

при   и cos?1 = const (рис. 13).

Рис. 13 —  Внешняя характеристика трансформатора

Из рис. 13 следует, что внешняя характеристика трансформатора при увеличении тока нагрузки до номинального является достаточно жесткой. Изменение напряжения составляет всего несколько процентов и зависит от характера нагрузки, что находится в соответствии с векторной диаграммой (рис. 12 ).

При активной и активно-индуктивной нагрузке напряжение  уменьшается, при активно-емкостной нагрузке оно может несколько возрастать. На практике величина изменения напряжения обычно рассчитывается по приближенной формуле:

где  ? = I2/I2н нагрузка трансформатора в относительных единицах;

Потери в трансформаторе и его КПД

Трансформатор потребляет из сети мощность:

где m1 – число фаз.

Часть этой мощности, как отмечалось, теряется в виде потерь в обмотках:

другая часть — в виде потерь в сердечнике на гистерезисе и вихревые токи.

Электромагнитная мощность:

передается во вторичную обмотку посредством магнитного поля.

Полезная мощность равна:

Потери в стали:

мало изменяются при изменении нагрузки и относятся к категории постоянных потерь. Потери в обмотках:

являются переменными т.к. изменяются при изменении тока. Коэффициент полезного действия трансформатора показывает соотношение между мощностью, которая передается из первичной обмотки во вторичную и обратно, и мощностью, которая преобразуется в тепло. КПД определяется по формуле:

КПД силовых трансформаторов обычно достигает 9498%. Рассчитывают трансформаторы таким образом, чтобы КПД имел наибольшее значение при нагрузке ? = 0,5 – 0,7 от номинальной. Обычно трансформаторы работают с некоторой недогрузкой — в области максимального значения КПД рис. 14.

Рис. 14 — Коэффициент полезного действия трансформатора

При передаче значительной реактивной мощности (при уменьшении cos?2) КПД уменьшается, что показано на рис. 1, кривая 2.

Параллельная работа трансформаторов

Параллельная работа трансформаторов возможна лишь в том случае, если в обмотках трансформаторов не возникают уравнительные токи, а нагрузка распределяется пропорционально номинальным мощностям трансформаторов. Практически это сводится к выполнению следующих условий:

1. Напряжения обмоток высшего и низшего напряжения, указанные на заводских табличках, должны быть соответственно равны, т.е. должны быть равны коэффициенты трансформации k1 = k2 kn.

2. Напряжения короткого замыкания uк, указываемые на заводских табличках трансформаторов, должны быть также равны; при параллельной работе трансформаторов допускают отклонения в пределах ±10 %.

3. Мощности параллельно работающих трансформаторов не должны значительно отличаться одна от другой. Допускается различие мощностей не больше чем в 3 раза.

4. Схемы и группы соединений обмоток трансформаторов, предназначенных для параллельной работы, должны быть одинаковыми. Это требование может быть выполнено, если условные обозначения схем и групп соединений, указанные на заводских табличках, будут одинаковыми.

5. Обмотки фаз трансформаторов, включенных для параллельной работы, должны совпадать, т. е. одинаково обозначенные выводы обмоток фаз должны быть присоединены к одной, а не к разным шинам.

Рассмотрим последствия нарушения названных условий.

Допустим, что не выполнено первое условие (k1 < k2 ). Это значит, что при одном и том же напряжении на первичных обмотках трансформаторов U1, вторичные ЭДС трансформаторов будут неодинаковы Е1 > Е2. Под действием возникшей разности потенциалов в замкнутом контуре  вторичных обмоток пойдет уравнительный ток, который создаст падение напряжения в обмотках.

В трансформаторе 1 это вызовет уменьшение напряжения на зажимах вторичной обмотки, в трансформаторе 2 – увеличение вторичного напряжения. В результате напряжение на внешних шинах будет иметь среднее значение. При нагрузке уравнительный ток накладывается на ток нагрузки, вследствии чего трансформатор 1 будет перегружен, а трансформатор 2 – недогружен.

ГОСТ допускает расхождение в коэффициентах трансформации не больше ±0,5% от их среднего значения.

Если трансформаторы имеют неодинаковые номинальные напряжения короткого замыкания  u1К  ? u2К, значит неодинаковы сопротивления короткого замыкания Z1К ? Z2К. При работе трансформаторов в параллель напряжения вторичных обмоток одинаковы т. е. I12Z1К = I22Z2К, а это возможно лишь при неодинаковых токах трансформаторов.

Это значит, что при параллельной работе трансформаторов нагрузка между ними будет распределяться непропорционально их номинальным мощностям. Чтобы не вызвать аварии трансформатора, имеющего меньшее значение uК, необходимо снижать общую нагрузку. Это ведет к неполному использованию трансформаторов.

Согласно ГОСТ необходимо, чтобы разница напряжений короткого замыкания не превышала ±10% от их среднего значения, а соотношение номинальных мощностей параллельно работающих трансформаторов было не больше, чем 3:1.

Несоблюдение четвертого условия вызывает настолько большой уравнительный ток, что трансформаторы могут выйти из строя из-за перегрева обмоток. Даже при минимальном расхождении групп соединения трансформаторов (например, у одного группа ?/? – 0, а у другого ?/? – 11) уравнительный ток будет примерно в 5 раз больше номинального, что равносильно короткому замыканию.

Во избежание ошибок присоединение трансформаторов к сети без нулевого провода ( пятое условие ) производят следующим образом. Включают оба трансформатора со стороны высшего напряжения, затем один из них присоединяют к шинам низкого напряжения выводами обмоток всех фаз, а другой — выводами обмотки одной фазы, например С.

Затем между выводами обмоток фаз В и А второго трансформатора и шинами низкого напряжения, к которым соответственно присоединены выводы обмоток фаз В и А первого трансформатора, включают вольтметр или лампу.

Если обозначения выводов обмоток фаз на трансформаторах нанесены правильно, то между всеми парами одноименных выводов напряжение равно нулю (лампа не горит или вольтметр показывает нуль) и выводы В и А второго трансформатора могут быть соединены с шинами, к которым соответственно присоединены выводы В и А первого трансформатора.

Контрольные лампы или вольтметры при указанной проверке должны быть взяты на двойное рабочее напряжение трансформатора со стороны низшего напряжения.

Трансформаторы. Режимы работы и рабочие характеристики Ссылка на основную публикацию

Источник: https://www.radioingener.ru/transformatory_part2/

Принцип действия трансформатора, хх и кз | Неисправности электрооборудования и способы их устранения

Подробности Категория: Оборудование

Пусть первичная обмотка 1 трансформатора (рис. 28) содержит W1 витков и подключена к источнику переменного тока при разомкнутом ключе К. Под действием напряжения источника тока в обмотке 1 появляется ток холостого хода. Ампер-витки создают основной переменный магнитный поток Ф, который замыкается по магнитопроводу трансформатора. Магнитный поток Ф, пересекая витки обмоток 1 и 2, наводит в обеих обмотках переменные э. д. с.

Действующие значения э. д с. могут быть определены по формулам, В:

(34) где Е1 и Е2—соответственно действующие значения э. д. с. обмоток 1 и 2, В. 1—частота источника переменного тока, Гц; \1 и W2— соответственно числа витков обмоток 1 и 2; Ф — основной магнитный поток, 3-с. Если замкнуть ключ К, под действием э. д. с. Е2 по обмотке 2 потечет ток h, направленный противоположно току обмотки 1.

Ампер-витки действуют встречно ампер-виткам обмотки 1. При нормальных режимах работы трансформатора поток Ф практически остается по стоянным, это обеспечивается за счет того, что с увеличением тока h увеличивается ток обмотки. С достаточной для практики точностью можно считать справедливым следующее равенство: hWx = hW2.

                                  (35)

При разомкнутом ключе К напряжение на обмотке 2 равно э. д. с. этой обмотки; по мере нагрузки трансформатора напряжение обмотки U2 несколько уменьшается.

Холостой ход и короткое замыкание трансформатора

Холостой ход и короткое замыкание трансформатора являются весьма важными режимами его работы, определяющими эксплуатационные качества трансформатора.    I Холостой ход — это такой режим работы трансформатора, когда к одной из обмоток подводится номинальное напряжение, а вторая обмотка разомкнута. Рассмотрим холостой ход трехфазного трансформатора с магнитопроводом стержневого типа, обмотки которого соединены по схеме (рис. 29).

Опыт проводится в такой последовательности. Включим рубильник Р и при помощи индукционного регулятора 1 установим номинальное линейное напряжение U1л на первичной обмотке трансформатора, наблюдая за показаниями вольтметра V1. Условимся считать первичной ту обмотку трансформатора, к которой подводится напряжение.

Установив номинальное напряжение на первичной обмотке, зафиксируем показания приборов: амперметров— А1, А2, А3; ваттметров W1 и W2, вольтметра— V2.

Рис. 29. Схема опыта холостого хода трансформатора: Амперметры А 1, А2, А3 покажут нам линейные токи холостого хода соответствующих фаз —

1—индукционный регулятор; 2 — трехфазный трансформатор.

Токи равны. Это явление объясняется тем, что длина средней магнитной силовой линии фазы В меньше, чем длины средних магнитных силовых линий фаз А и С (рис. 30), а потому провести магнитный поток по длине1 легче, чем по длинам 1А, 1С.

За ток холостого хода трехфазного трансформатора принимают среднее арифметическое трех токов отдельных фаз А; В\ С:
(36) ок холостого хода трансформаторов обычно не превышает 4-12% от номинального тока, причем меньшие Цифры относятся к трансформаторам большей мощности.

Малая величина тока холостого хода трансформаторов объясняется отсутствием воздушных зазоров в магнитопроводе (в асинхронных двигателях ток холостого хода равен 20-f-60% от номинального). Иногда необходимо знать фазное значение тока холостого хода Фазный ток холостого хода определяется по следующим формулам: при соединении обмоток звездой и зигзагом

(37)

где /оф и /0л—соответственно фазный и линейны токи холостого хода, А; при соединении обмоток треугольником

(38

При холостом ходе трансформатор не совершает полез ной работы, его к. п. д. равен нулю. Активная мощность которую при этом показывают ваттметры W1 и W2 цели ком рассеивается в виде тепла, идущего на нагрев магнитопровода и первичной обмотки трансформатора. Сле дует отметить, что для определения активной мощности при холостом ходе трансформатора необходимо один и ваттметров переключить и взять разницу показаний двух ваттметров. Как указывалось ранее, ток холосто го хода трансформатора мал, а потери в обмотке за висят от квадрата тока и составляют менее 2% от потери холостого хода. При холостом ходе трансформатора потерями в первичной обмотке пренебрегают и считают что потерями холостого хода являются потери в стали.
Рис. 30. Длины средних магнитных силовых линий трехстержневого трехфазного трансформатора.

При холостом ходе с большой степенью точности можно считать, что U= E. Отношение э. д. с. первичной обмотки к э. д. с. вторичной об мотки называют коэффициентом трансформации. В трех фазных трансформаторах различают два коэффициент трансформации: коэффициент трансформации линейны э. д. с. и коэффициент транс формации фазных э. д. с. Из опыта холостого хода (рис. 29) можно определить коэффициента трансформации по показаниям вольтметров. Коэффициент трансформации линейных э.д. с.

(39)

где Е1л и Е2л — соответственно первичная и вторичная линейные э. д. с., В.

Коэффициент трансформации фазных э. д. с.
(40) где Е1ф, Еф2 — соответственно фазные э. д. с. и напряжения первичной и вторичной обмоток, В. Если обе обмотки трансформатора соединены одинаково, то коэффициенты трансформации фазных и линейных э.д.с. равны. При холостом ходе трансформатора коэффициент мощности cos ф0 меньше 0,2. Коэффициент мощности при холостом ходе можно определить по опытным данным с помощью формулы:

(41)

где Р0—мощность холостого хода, определенная с помощью ваттметров. Однофазный трансформатор работает при холостом ходе, как одна фаза трехфазного. Короткое замыкание — это такой режим работы трансформатора, когда вторичная обмотка замкнута, а к первичной обмотке подведено напряжение, обеспечивающее протекание номинальных токов по обеим обмоткам (испытательное короткое замыкание). При испытательном коротком замыкании к первичной обмотке подводится напряжение, равное 3,5-17% номинального. В процессе эксплуатации трансформатора возможно короткое замыкание вторичной обмотки при номинальном напряжении на первичной. Такой режим работы является аварийным, а короткое замыкание называется внезапным. При внезапном коротком замыкании токи в обмотках трансформатора в 10 и более раз больше номинальный. Если трансформатор при такое коротком замыкании не будет своевременно отключен от сети, то он выйдет из строя. Рис. 31. Схема опыта короткого замыкания трансформатора: 1 — индукционный регулятор; 2 — трехфазный трансформатор. В дальнейшем мы будем рассматривать только испытательное короткое замыкание. Рассмотрим короткое замыкание трансформатора, обмотки которого соединены по схеме (рис. 31). Опыт нужно проводит в такой последовательности. Индукционный регулятор 1 поста вить в положение минимальной напряжения, включить рубильник Р и при помощи индукционной регулятора по показанию амперметра А1 или А2 установить номинальный ток трансформатора. При симметричном напряжении сети и исправном трансформаторе показания амперметров должны быть одинаковыми. При опыте короткого замыкания приборы показывают:  перметры А1, А2, А3— линейны токи фаз с первичной стороне трансформатора;       амперметр Ац — линейный ток вторичной стороны; вольтметр V — напряжение короткого замыкания; ваттметры и W2 — активную мощность коротко го замыкания. При коротком замыкании трансформатор не совершает полезной работы, его к. п. д. равен нулю. Активная мощность короткого замыкания рассеивается в виде тепла, которое нагревает обмотки трансформатора. Потери в стали можно считать пропорциональными квадрату напряжения. Так как напряжение мало, то, следовательно, и потери в стали очень малы, и ими можно пренебречь. При коротком замыкании считают, что активная мощность короткого замыкания является потерями в обмотках трансформатора. При соединении обмотки в треугольник фазные и линейные напряжения одинаковы. Обычно напряжение короткого замыкания выражают в процентах от номинального: Ul и— номинальное линейное напряжение первичной обмотки, В.

V — показание вольтметра, В.

Схемы соединения обмоток и группы трансформаторов

Источник: https://leg.co.ua/knigi/oborudovanie/neispravnosti-elektrooborudovaniya-i-sposoby-ih-ustraneniya-3.html

Режим холостого хода трансформатора

Этот режим характеризует подача переменного напряжения, меняющегося по принципу синусоиды, на первичную обмотку аппарата, при этом во вторичной, находящейся в разомкнутом состоянии, электроток отсутствует полностью.

В таком случае трансформаторное устройство напоминает катушку индуктивности с замкнутым магнитопроводом из ферромагнетика.

Чтобы проводить опыты с трансформатором, находящимся в данном состоянии, потребуется изучить принципиальную схему, соответствующую используемому устройству (однофазному или трехфазному).

Схема трансформатора при холостом ходе

Про опыт холостого хода

Проведение опыта холостого хода позволяет узнать основные показатели функционирования прибора: теряемый процент мощности, коэффициент трансформации, значение электротока при работе вхолостую. Выполняется опыт с помощью измерительных приборов: ваттметра, амперметра и пары вольтметров, один из которых (превосходящий по внутреннему сопротивлению) подключается к клеммам вторичной обмотки. На первичную – подается номинальное напряжение.

Что такое коэффициент мощности

В процессе эксперимента можно найти:

  • электроток холостого хода (замеряется амперметром) – обычно его значение невелико, не больше 0,1 от номинального показателя тока первой обмотки;
  • мощность, теряемую в магнитопроводе прибора;
  • показатель трансформации напряжения – примерно равен значению в первичной цепи, деленному на таковое для вторичной (оба значения – данные вольтметров);
  • по результатам замеров силы тока, мощности и напряжения первичной электроцепи можно высчитать коэффициент мощности: мощность делят на произведение двух других величин.

Методика проведения выглядит так: первичную катушку (или ВН) соединяют с источником питания через три традиционных измерительных прибора (ампер-, ватт,- и вольтметр). У вторичной (НН) закорачивают выводы. Потребляемый электроток будет очень высоким, особенно с учетом низкого показателя обмоточного сопротивления.

Для номинального тока замеряют напряжение и мощность. На первичной катушке требуется низкое напряжение. Оно, как и ток для ХХ, имеет очень низкое значение, по сравнению с номинальным, – в районе 0,05.

Тем не менее, эта техническая характеристика обладает большой практической важностью – по ней считают вторичное напряжение и узнают, допустимо ли подключать устройства параллельно.

Важно! Потери мощности в сердечнике можно не учитывать из-за мизерного напряжения. Показания на ваттметре поэтому принимаются за потери в меди.

Рабочее сопротивление обмотки R можно найти так:

R=P/I2,

где:

  • Р – данные вольтметра,
  • I – сила тока.

Общий показатель сопротивления – Z=U/I, реактивный – X = √ (Z² — R²).

Проведение эксперимента короткого замыкания

Принцип работы трансформатора в режиме холостого хода

Когда на обмотку прибора подают напряжение синусоиды, в ней возникает слабый ток, как правило, не превышающий 0,05-0,1 от номинального значения (это и есть холостой ток). Его создает обмоточная магнитодвижущая сила, именно из-за ее действия в замкнутом магнитопроводном элементе возникают ведущий магнитный поток (обозначается Ф) и рассеивающийся поток Ф1, замкнутый вокруг обмоточного тела. Значение магнитодвижущей силы равно произведению холостого тока на число обмоточных витков.

Как рассчитать потребление электрической энергии

Ведущий поток создает в приборе две электродвижущие силы: самоиндукционную у первой обмотки и взаимной индукции – у второй. Ф1 продуцирует у первой катушки ЭДС рассеяния. Она имеет очень небольшую величину, ведь создающий ее поток замыкается, по большей части, по воздушным массам, ведущий поток Ф – по магнитопроводу. Поскольку главный поток имеет гораздо большие масштабы, то и генерируемая им для первичной катушки электродвижущая сила тоже имеет намного большее значение.

Важно! Так как подаваемое напряжение имеет вид синусоиды, такие же характеристики имеют главный поток и создаваемые им обмоточные электродвижущие силы.

Но по причине магнитного насыщения имеющийся в приборе поток непропорционален электротоку, создающему намагничивание, так что последний синусоидальным не будет. Практикуется замена его реальной кривой соответствующей ей синусоидой с таким же значением.

Искажение тока связано с третьей гармонической составляющей (величина, определяемая вихревыми потоками и магнитопроводным насыщением).

Таблица потерь

Учимся легко считать потребляемую мощность электроприбора

Когда цепочка второй катушки разомкнута, она не использует какой-либо рабочей мощности. У той мощности, что потребляет первая, есть некоторый активный процент (он и представляет собой потери прибора), но доминирует реактивный, отвечающий за намагничивание и отдаваемый генератору.

Что касается потерянной мощности, то большая ее часть затрачивается на процессы перемагничивания и генерацию вихрей токов магнитопровода. Из-за этого последний начинает перегреваться. Так как поток рассеяния не зависит от нагрузочного электротока, то мощностные потери имеются не только на холостом ходу, но и при подаче нагрузок. Еще некоторая часть потерь (очень небольшая) затрачивается на нагревание катушечного провода.

Ее малое значение обусловлено показателями сопротивления проводка и тока холостого хода.

При напряжении 10/0,4 кВ величина потерь будет возрастать по мере увеличения мощности. Для номинального показателя мощности в 250 кВА потери будут равны 730 Вт, для 400 кВА – 1000 Вт, для 2500 кВА – 4200 Вт. По прошествии лет эксплуатации в магнитопроводе происходят процессы, увеличивающие объем потерь: изнашивается изоляция, изменяются структурные характеристики металла. Из-за этого теряться может до 50% мощности.

Проверка работы

Главное назначение данного опыта в сочетании с экспериментом короткозамкнутого состояния – нахождение коэффициента полезного действия трансформирующего устройства. После постановки трансформатора в надлежащий режим проводятся следующие измерения:

  1. Данные напряжения, направляемого на первую обмотку, и затем – на выводы второй. Можно это делать не только парой вольтметров, но и мультиметром, установив соответствующий режим работы. Если для замеров используются вольтметры, на вторую катушку ставят аппарат с большим значением сопротивления, чтобы поддерживать нулевой ток. Замерив оба показателя, можно найти коэффициент трансформации, разделив значение первичной катушки на таковое для вторичной.
  2. Ваттметр для регистрации потребляемой мощности ставят в первичную электроцепь. В нее же подсоединяют амперметр, он показывает токовую силу прибора, работающего на холостом ходу.

Измерение напряжения трансформатора мультиметром

Холостой ход трехфазного трансформатора

Функционирование такого прибора в рассматриваемом режиме зависит от устройства его магнитной системы. Если используется прибор по типу группы однофазных трансформаторов либо бронестержневая система, третья гармоническая составляющая для каждой фазы будет замыкаться в отдельном сердечнике, набирая значение до 20% активного магнитопотока.

Создается добавочная электродвижущая сила, способная достичь очень высокого показателя – 0,5-0,6 от главной ЭДС. Подобные процессы способны вызвать нарушение целостности изоляции, за которым последует поломка электрической установки.

Лучшим вариантом является система с тремя стержнями, тогда третья составляющая не будет идти по магнитопроводу, а замкнется в воздушной или иной среде с низким показателем магнитной проницаемости (например, масляной). В этом случае массивная добавочная ЭДС, вносящая серьезные искажения, развиваться не будет.

Схема опыта холостого хода трехфазного двухобмоточного трансформатора

Параметры трансформатора по опытам холостого хода

В паспорте аппарата указывают ряд величин, способных помочь в расчете таких эксплуатационных показателей, как максимальное получаемое на практике значение электротока короткого замыкания, энергетические потери, амплитуда вариабельности напряжения приемника при меняющемся токе.

Эти величины делятся на две группы. Первая принадлежит работе в холостом режиме: сюда относятся показатель токовой силы в процентах от номинальной и мощностные потери магнитопровода.

Вторая – обмоточные потери при коротком замыкании и напряжение (тоже указываемое относительно номинального) в этом состоянии.

ЭТО ИНТЕРЕСНО:  Что можно сделать из трансформатора
Понравилась статья? Поделиться с друзьями:
ЭлектроМастер
Как натянуть сип между столбами

Закрыть