Что такое источник питания

Источники электропитания

что такое источник питания

БЕСПЕРЕБОЙНЫЕ
АВТОНОМНЫЕ

Источники питания служат для выработки энергии для работы электрических приборов и устройств. Среди них существует две категории:

К первичным относятся те, которые сами производят электрическую энергию, путем преобразования других видов энергии, химических или иных реакций.

В качестве примера можно указать различного типа электростанции (гидравлические, тепловые или атомные), химические источники (гальванические батареи, аккумуляторы, топливные элементы), автономные электростанции (бензо- и дизель-генераторы, ветровые и солнечные электростанции).

Вторичные источники электропитания служат для преобразования напряжения и тока первичных в соответствии с требованиями потребителей.

Также с их помощью организуется гальваническое разделение внешних и внутренних цепей. К вторичным источникам относятся:

  • трансформаторные преобразователи переменного тока;
  • выпрямители;
  • инверторные преобразователи.

Нередко понятия первичных и вторичных источников размыты и относительны. Так бытовая электросеть для домашних устройств является первичным источником, поскольку в составе большинства устройств имеется свой блок питания, который преобразует напряжение сети до необходимых значений.

В то же время трансформаторная подстанция, от которой берет начало бытовая электросеть, сама является вторичным источником относительно электростанции или предыдущей подстанции.

В большинстве случаев бытовая и промышленная аппаратура требуют наличия источников постоянного или переменного напряжения для питания внутренних цепей. В качестве вторичного используется внешний или встроенный блок питания, который преобразует входное напряжение 220 или 380 В до необходимых значений.

До недавнего времени блоки питания строились на основе трансформаторов переменного тока, выпрямителей, фильтров и стабилизаторов. Данные устройства имели большие габариты, массу и низкий КПД.

Развитие электроники позволило разработать устройства, также использующие трансформаторное преобразование, но работающие с промежуточным преобразованием входного переменного напряжения в постоянное, а затем обратно в переменное, но на гораздо более высокой частоте.

Такой подход позволил снизить габариты, массу и стоимость вторичных источников в несколько раз.

Отдельная категория блоков питания совсем не использует трансформаторы и работает по иному принципу преобразования напряжения. К сожалению, в большинстве из них присутствует гальваническая связь внутренних цепей и питающей сети, что не всегда соответствует требованиям электробезопасности.

Источники бесперебойного электропитания

Большая категория устройств нуждается в непрерывной подаче электроэнергии вне зависимости от внешних условий. Это могут быть как вычислительная техника (серверы, устройства хранения данных), так и целые производства с непрерывным циклом. Перебои питания в таких случаях недопустимы.

Для обеспечения постоянной подачи питающего напряжения разработаны устройства бесперебойного питания. В широком смысле источником бесперебойного питания (ИБП) может служить резервная линия электропередач или автономная электростанция.

Сейчас этим термином принято именовать устройства вторичного электропитания, которые предназначены для обеспечения работоспособности подключенной аппаратуры при кратковременных перебоях электроэнергии питающей сети.

Как правило, источники бесперебойного питания также выполняют функцию защиты от помех и скачков напряжения. По принципу действия их можно разделить на несколько категорий:

  • off-line;
  • line-interactive;
  • online.

Наиболее простую конструкцию имеют off-line блоки электропитания. В нормальных условиях питание устройств осуществляется напрямую от первичного источника.

В случае пропадания напряжения или его выхода за допустимые пределы источник автоматически переключается на питание от встроенного аккумулятора, напряжение которого преобразуется при помощи инвертора.

Подобные устройства имеют в своем составе пассивные фильтры, препятствующие прохождению помех и схему слежения за параметрами входного напряжения. Несомненное достоинство off-line ИБП – простота конструкции, низкая стоимость и высокий КПД.

Следующий тип «бесперебойников» — line-interactive, работает по тому же принципу, но имеет встроенный ступенчатый стабилизатор на основе автотрансформатора.

Такой блок дополнительно стабилизирует входное напряжение и в большинстве случаев позволяет не переключаться на питание от аккумулятора, который необходим только в случаях неспособности автотрансформатора справиться со стабилизацией (значительное превышение или понижение входного напряжения, его полное пропадание).

Основные недостатки перечисленных устройств:

  • требуется определенное время на переключение в режим работы от аккумулятора;
  • невозможность коррекции частоты сети;
  • несинусоидальное напряжение на выходе при работе от аккумулятора.

Первый недостаток может вызвать сбои в работе подключенных устройств при переключениях. Второй более существенен и не позволяет подключать устройства, требующие для питания синусоидального напряжения, а это асинхронные электродвигатели и бытовая техника, имеющая их в составе, например, отопительные котлы.

Только электроприемники, работа которых основана импульсных блоках питания, то есть не чувствительные к форме входного напряжения, могут нормально функционировать от подобных ИБП. К таким потребителям относятся устройства вычислительной техники, где off-line ИБП получили наибольшее распространение.

Наиболее высокое качество обеспечивают online устройства. Работают они по принципу двойного преобразования. Входное напряжение сети сначала преобразуется в постоянное, а затем, при помощи инвертора, обратно в переменное.

Самое главное, что время переключения на питание от внешнего аккумулятора здесь отсутствует полностью, поскольку он постоянно подключен в цепь и при нормальных условиях работы находится в буферном режиме.

Поскольку выходное напряжение получается в результате преобразования постоянного, то имеется возможность коррекции его частоты и уровня в необходимых пределах.

Только самые дешевые устройства имеют на выходе напряжение с низким качеством. В основном большинство ИБП двойного преобразования выдают потребителям чистое синусоидальное напряжение, что делает такие приборы пригодными для питания большинства устройств.

Существенный недостаток online преобразователя – его высокая стоимость.

Все перечисленные устройства предназначены для кратковременной работы от внутреннего аккумулятора. Так происходит потому, что аккумуляторы имеют низкое значение ЭДС и при преобразовании к уровню входного напряжения от аккумулятора требуется отдать довольно значительный ток.

Аккумуляторы больших емкостей имеют значительные габариты и массу, а также требуют большое количество времени на подзарядку.

Таким образом, ИБП служат в основном для того, чтобы корректно и безопасно отключить устройства при пропадании напряжения сети.

Источники автономного электропитания

Автономные источники электропитания предназначены для обеспечении непрерывности питания устройств при длительном пропадании напряжения сети или в том случае, когда объект находится на большом расстоянии от линии электропередач и подвод питания от нее нецелесообразен по той или иной причине.

Автономные электростанции строятся на основе дизельных или бензиновых генераторов, ветряных или солнечных электростанций. Каждый тип имеет свою область применения в зависимости от местных условий.

Если существует необходимость в обеспечении беспрерывной работе устройств в условиях временных перебоев поставок электроэнергии, то наиболее приемлемый вариант – использование бензиновых или дизельных генераторов.

Бытовые электростанции выпускаются многими предприятиями на различные значения мощности. Существенный недостаток подобных электростанций – высокое потребление дорогостоящего топлива.

Более дешевая электроэнергия получается при помощи солнечных или ветроэлектростанций, которые используют восполняемые природные источники энергии – солнечное освещение или энергию ветра.

Целесообразность в использовании такого оборудования возникает в случаях более или менее постоянной работы исключительно от них, поскольку первоначальные затраты на их приобретение и установку весьма велики. И окупаемость таких устройств занимает длительное время.

Работа ветровых и солнечных электростанций сильно зависит от местных условий. Так для нормальной работы солнечной электростанции необходимо большое количество солнечных дней в году, а для компенсации энергии солнца в темное время суток или ненастную погоду требуется внушительный запас резервных аккумуляторов.

Зато такая станция не имеет подвижных частей и, как следствие, очень высокую надежность. Солнечные панели имеют небольшой вес и могут размещаться на крышах практически любых построек или на простых каркасах.

Ветрогенераторы требуют размещения в местах с регулярным движением воздуха, преимущественно в одном направлении. Лучшее место для установки – преобладающая возвышенность на местности.

Конструкция ветрогенератора имеет большой вес и требует капитального обустройства. Наличие подвижных частей, зачастую установленных на большой высоте, затрудняет обслуживание электростанции.

2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Источник: https://eltechbook.ru/istochniki_jelektropitanija.html

Какие существуют виды источников электрического тока?

что такое источник питания

Источник электрического тока – это устройство, с помощью которого создаётся электрический ток в замкнутой электрической цепи. В настоящее время изобретено большое количество видов таких источников. Каждый вид используется для определённых целей.

Виды источников электрического тока

Существуют следующие виды источников электрического тока:

  • механические;
  • тепловые;
  • световые;
  • химические.

Механические источники

В этих источниках происходит преобразование механической энергии в электрическую. Преобразование осуществляется в специальных устройствах – генераторах. Основными генераторами являются турбогенераторы, где электрическая машина приводится в действие газовым или паровым потоком, и гидрогенераторы, преобразующие энергию падающей воды в электричество. Большая часть электроэнергии на Земле производится именно механическими преобразователями.

Тепловые источники

Здесь преобразуется в электричество тепловая энергия. Возникновение электрического тока обусловлено разностью температур двух пар контактирующих металлов или полупроводников — термопар. В этом случае заряженные частицы переносятся от нагретого участка к холодному.

Величина тока зависит напрямую от разности температур: чем больше эта разность, тем больше электрический ток. Термопары на основе полупроводников дают термоэдс в 1000 раз больше, чем биметаллические, поэтому из них можно изготавливать источники тока.

Металлические термопары используют лишь для измерения температуры.

СПРАВКА! Чтобы получить термопару, необходимо соединить 2 различных металла.

В настоящее время разработаны новые элементы на основе преобразования тепла, выделяющегося при естественном распаде радиоактивных изотопов. Такие элементы получили название радиоизотопный термоэлектрический генератор.

В космических аппаратах хорошо себя зарекомендовал генератор, где применяется изотоп плутоний-238. Он даёт мощность 470 Вт при напряжении 30 В. Так как период полураспада этого изотопа 87,7 года, то срок службы генератора очень большой.

Преобразователем тепла в электричество служит биметаллическая термопара.

Источник: https://odinelectric.ru/elektrosnabzhenie/vidy-istochnikov-electricheskogo-toka

Чем генерируется постоянный ток: обзор источников питания, их преимуществ и недостатков

что такое источник питания

Приводы многих механизмов и целый ряд электронных устройств работают на постоянном токе. Последний генерируется разными способами.

О том, как устроен источник постоянного тока и какие существуют его разновидности, расскажет данная статья.

Источники питания постоянного тока

Постоянный ток получают посредством таких устройств:

  1. гальванические элементы — батарейки и аккумуляторы: разделение положительных и отрицательных зарядов осуществляется за счет химического взаимодействия;
  2. генераторы постоянного тока: превращают механическую энергию в электрическую;
  3. выпрямители: преобразуют переменный ток в постоянный;
  4. фотоэлементы (солнечные батареи) и термоэлементы: превращают в электричество энергию, соответственно, света и тепла.

Наиболее распространены первые три разновидности, они и будут рассматриваться подробно.

Батарейки

Получение разности потенциалов химическим путем удобно показать на простом примере — цинковом стержне, помещенном в серную кислоту. Положительно заряженные атомы цинка притягивают к себе отрицательные ионы кислоты и под их воздействием отрываются от стержня.

Последний в результате этого становится отрицательно заряженным, кислота же приобретает положительный заряд.

Для подключения к положительному полюсу Алессандро Вольта, первооткрыватель данного явления, опустил в раствор медный стержень. При подключении нагрузки, электроны с цинкового стержня перемещаются через нее к медному.

Недостаток данного решения — образование газообразного водорода на медной пластине, затрудняющего работу элемента. Поэтому в современных батарейках вместо меди применяют другие материалы, например, графит в оболочке из диоксида марганца (последняя поглощает газ). Серная кислота заменена раствором нашатырного спирта.

Применяются и другие сочетания материалов, например:

  • марганец и олово;
  • марганец и магний;
  • свинец и цинк;
  • свинец и кадмий;
  • свинец и хлор;
  • цинк и хром.

По характеру работы батарейки из разных материалов отличаются. У одних ЭДС по мере разряда постепенно снижается, у других — долго остается постоянной, затем резко падает.

Аккумулятор

Емкость аккумулятора, в отличие от батарейки, после разрядки можно восполнить подключив к источнику электрической энергии.

Материалы также используются разные. К примеру, в автомобильных аккумуляторах аноды делают из двуокиси свинца, катоды — из губчатого свинца. Роль электролита играет раствор H2SO4.

Указаны материалы так называемой активной массы электродов. Основание же их является свинцово-кальциевым или свинцово-сурьмяным.

При разрядке происходит такое же взаимодействие, как и в элементе Вольта: отрицательные ионы серной кислоты притягиваются к положительным атомам свинца с образованием сульфата свинца, так что электрод приобретает отрицательный заряд, электролит — положительный.

Попутно из освободившегося водорода и кислорода, выделяющегося из двуокиси свинца, образуется вода, что приводит к снижению плотности электролита. По этому параметру определяют уровень заряда аккумулятора.

Автомобильный аккумулятор

При зарядке происходит обратный процесс: сульфат свинца и вода превращаются в серную кислоту, свинец и диоксид свинца.

Литий-ионный аккумулятор

Мобильные телефоны, ноутбуки, прочие электронные устройства, а также электромобили сегодня оснащают литий-ионными аккумуляторами. Электроды такого источника изготавливают путем нанесения катодного материала на фольгированный алюминий и анодного — на медную фольгу.

Заряд переносится положительно заряженными атомами лития. Они обладают способностью встраиваться в кристаллическую решетку различных материалов — солей и оксидов металлов, графита. При этом образуется химическая связь, например, в оксиде марганца — LiMnO2, в графите — LiC6.

В качестве отрицательной пластины сегодня применяют графит, в первых версиях это были металлический литий и каменноугольный кокс.

Катодные материалы используются такие:

  • лития кобальтат (LiCoO2);
  • литий-феррофосфат (LiFePO4);
  • растворы на основе никелата лития (в твердом агрегатном состоянии);
  • шпинель литий-марганцевая (LiMn2O4).

Достоинства литий-ионных аккумуляторов:

  • значительная емкость;
  • низкий саморазряд;
  • мизерный эффект памяти (практически нулевой).

Эти источники комплектуются контроллерами разряда. Устройство отключает батарею при перегреве и при сокращении разряда ниже критического уровня.

Генераторы

Генератор DC в основном устроен так же, как и переменный: в магнитном поле вращается ротор с обмотками и в последних, из-за постоянного изменения магнитного потока наводится ЭДС (закон электромагнитной индукции). Разница состоит в наличии коллектора — приспособления из полуколец, благодаря которому на токосъемные щетки всегда подается ЭДС с одной полярностью.

ЭТО ИНТЕРЕСНО:  Что такое блокинг генератор

В каждом витке рамки ЭДС пульсирует — меняется при вращении от нуля до максимума. Применением обмотки из множества витков, расположенных по определенному закону, добиваются сглаживания пульсаций.

Выпрямители

Преобразование переменного тока в DC осуществляется посредством полупроводниковых приборов с односторонней проводимостью — диодов. Существует несколько разновидностей выпрямителей.Однополупериодные — простейший вариант преобразователя, состоящий из единственного диода. Последний пропускает ток только в течение полупериода, когда полярности входного напряжения и его собственная совпадают.

Для сглаживания пульсаций используется конденсатор: пока диод пропускает ток, он заряжается, а в течение второго полупериода отдает заряд. При частоте входного переменного тока 50 Гц требуемая емкость конденсатора слишком велика (от 2000 до 5000 мкФ).

Поэтому на таких частотах выпрямители данного типа применяют крайне редко. Импульсные блоки питания дают на выходе переменный ток намного большей частоты — 10-15 кГц. Здесь использование однополупериодных выпрямителей вполне уместно. Таким блоком питания является, например, зарядное устройство мобильного телефона.

Недостатки однополупериодного выпрямителя:

  • нерациональное использование трансформатора;
  • значительное обратное напряжение на диоде.

Двухполупериодные пропускают ток в обоих полупериодах, есть две разновидности таких выпрямителей:

  1. схема со средней точкой. Это два однополупериодных выпрямителя, подключенные параллельно. Для работы схемы нужен особый трансформатор со средним выводом из вторичной катушки: с одной части катушки ток подается на нагрузку по 1-му диоду, со второй во втором полупериоде — по 2-му. Выпрямитель применялся, когда полупроводниковые приборы были дороги и сокращение их числа вдвое оправдывала использование более металлоемкого трансформатора. Сегодня рациональнее применять мостовую схему на 4-х диодах;
  2. мостовая схема. Представляет собой 4 диода, подключенные в виде квадрата. В одну диагональ включается нагрузка, на другую — подается переменное напряжение. Для сглаживания пульсаций используется LC-фильтр или только конденсатор.

Мостовая схема относится к наиболее распространенным, ее достоинства:

  • не требуется трансформатор со средним выводом, возможно подключение напрямую к электросети;
  • обратное напряжение на диодах вдвое меньше, чем в однополупериодном аналоге.

Характеристики

Батареи и аккумуляторы характеризуются такими основными параметрами:

  1. номинальное напряжение;
  2. номинальная емкость. Измеряется в ампер-часах (А*ч) или миллиампер-часах (мА*ч);
  3. номинальный ток нагрузки;
  4. саморазряд. Обозначает, как быстро уменьшается заряд в батарее при ее бездействии. К примеру, саморазряд литий-ионного аккумулятора при температуре +250С составляет 1,6% в мес.;
  5. температура эксплуатации.

Для автомобильных аккумуляторов важны:

  1. резервная емкость. Время, в течение которого источник при падении напряжения до 10,5 В способен выдавать ток в 25 А. В норме составляет не менее 90 мин;
  2. ток холодной прокрутки. Сила тока, генерируемая аккумулятором при температуре -180С в течение 10 сек. с напряжением на клеммах не ниже 7,5 В. Этот параметр характеризует способность устройства запустить двигатель автомобиля зимой.

Пульсирующий ток на выходе выпрямителя принято раскладывать на постоянную и переменную составляющую, при этом он характеризуется:

  • максимальным и минимальным значением Imax и Imin;
  • амплитудой переменной составляющей Iac;
  • величиной постоянной составляющей Idc;
  • коэффициентом пульсаций (отношение амплитуды переменной составляющей к величине постоянной).

Регулируемые источники

Регулируемый источник состоит из таких компонентов:

Стабилизатор постоянного напряжения — интегральная микросхема, поддерживающая выходное напряжение на одном уровне, независимо от его колебаний на входе.

Колебаний обусловленных перепадами напряжения в электросети, изменением тока нагрузки или температуры. Блоки с такими стабилизаторами называют регулируемыми.

Сегодня распространены импульсные блоки питания, они состоят из таких компонентов:

  • входной выпрямитель;
  • инвертор;
  • понижающий высокочастотный трансформатор;
  • выходной выпрямитель.

Инвертор превращает предварительно выпрямленный ток снова в переменный, но при этом значительно повышает его частоту — до 10-15 кГц. При такой частоте, габариты трансформатора и потери в нем значительно сокращаются. Инвертор состоит из ключевых транзисторов, управляемых микросхемой.

Этот же принцип реализован в сварочных инверторах, чем и объясняется их компактность.

Существует множество микросхем-стабилизаторов с разными свойствами. К примеру, микросхема LM317 рассчитана на ток до 1,5 А и позволяет регулировать напряжение на выходе. Более мощный стабилизатор — микросхема LM350.  

Схемы

Однополупериодный выпрямитель. Простейшая схема с минимальным количеством элементов. Качество выпрямленного напряжения невысокое.

Схема однофазного однополупериодного выпрямителя

Двухполупериодный выпрямитель, схема со средней точкой. Уровень пульсаций U  в данном случае ниже по сравнению с предыдущим вариантом.

Двухполупериодная схема выпрямления со средней точкой

Двухполупериодный выпрямитель, мостовая схема. Самый популярный вариант для промышленной аппаратуры. В схеме используется 4 диода. Сглаживает пульсации напряжения RC-фильтр, установленный на выходе. Нередко его заменяет электролитический конденсатор.

Схема двухполупериодного мостового выпрямителя

Источник: https://proprovoda.ru/elektrooborudovanie/bloki-pitaniya/istochnik-postoyannogo-toka.html

Импульсный блок питания

Для обычного человека, не вникающего в электронику, был незаметен переход всех питающих устройств с линейных на импульсные. Именно импульсные источники (ИИП) питания устанавливаются во всей современной аппаратуре.

Основная причина перехода на такой тип преобразователей напряжения — это уменьшение габаритов. Так как всё время, с начала появления и изобретения, электронные приборы требуют постоянного уменьшения их размеров.

На рисунке изображен для сравнения габариты обычного и импульсного источника постоянного тока. Не вооруженным глазом видны различия в размерах.

Принцип действия ИИП и его устройство

Импульсный источник питания — это устройство, которое работает по принципу инвертора, то есть сначала преобразует переменное напряжение в постоянное, а потом снова из постоянного делает переменное нужной частоты.

В конечном итоге последний каскад преобразователя всё равно основан на выпрямлении напряжения, так как большинство приборов всё же работают на пониженном постоянном напряжении. Суть уменьшения габаритов этих питающих и преобразующих устройств построена на работе трансформатора. Дело в том, что трансформатор не может работать с постоянным напряжением.

Просто-напросто на выходе вторичной обмотки при подаче на первичную постоянного тока не будет индуктироваться ЭДС (электродвижущая сила). Для того чтобы на вторичной обмотке появилось напряжения оно должно меняться по направлению или же по величине. Переменное напряжение обладает этим свойством, ток в нём меняет своё направление и величину с частотой 50 Гц.

Однако, чтобы уменьшить габариты самого блока питания и соответственно трансформатора, являющегося основой гальванической развязки, нужно увеличить частоту входного напряжения.

При этом импульсные трансформаторы, в отличие от обычных линейных, имеют ферритовый сердечник магнитопровода, а не стальной из пластин. И также современные блоки питания работающие по этому принципу состоят из:

  1. выпрямителя сетевого напряжения;
  2. генератора импульсов, работающего на основе ШИМ (широтно-импульсная модуляция) или же триггера Шмитта;
  3. преобразователя постоянного стабилизированного напряжения.

После выпрямителя сетевого напряжения генератор импульсов с помощью ШИМ генерирует его в переменное с частотой около 20–80 кГц. Именно это повышение с 50 Гц до десятков кГц и позволяет значительно уменьшить, и габариты, и массу источника питания. Верхний диапазон мог быть и больше, однако, тогда устройство будет создавать высокочастотные помехи, которые будет влиять на работу радиочастотной аппаратуры. При выборе ШИМ стабилизации обязательно нужно учитывать также и высшие гармоники токов.

Даже при работе на таких частотах эти импульсные устройства вырабатывают высокочастотные помехи. А чем больше их в одном помещении или в одном закрытом помещении тем больше их в радиочастотах. Для поглощения этих негативных влияний и помех устанавливаются специальные помехоподавляющие фильтры на входе устройства и на его выходе.

Это наглядный пример современного импульсного блока питания применяемого в персональных компьютерах.

A — входной выпрямитель. Могут применяться полумостовые и мостовые схемы. Ниже расположен входной фильтр, имеющий индуктивность;B — входные с довольно большой емкостью сглаживающие конденсаторы. Правее установлен радиатор высоковольтных транзисторов;C — импульсный трансформатор. Правее смонтирован радиатор низковольтных диодов;D — катушка выходного фильтра, то есть дроссель групповой стабилизации;E — конденсаторы выходного фильтра.

Катушка и большой жёлтый конденсатор, находящиеся ниже E, являются компонентами дополнительного входного фильтра, установленного непосредственно на разъёме питания, и не являющегося фрагментом основной печатной платы.

Если схему радиолюбитель изобретает сам то он обязательно заглядывает в справочник по радиодеталям. Именно справочник является основным источником информации в данном случае.

Обратноходовой импульсный источник питания

Блок питания из энергосберегающих ламп

Это одна из разновидностей импульсных источников питания, имеющих гальваническую развязку как первичных, так и вторичных цепей. Сразу был изобретён именно этот вид преобразователей, который был запатентован ещё в далёком 1851 году, а его усовершенствованный вариант применялся в системах зажигания и в строчной развертке телевизоров и мониторов, для подачи высоковольтной энергии на вторичный анод кинескопа.

Основная часть этого блока питания тоже трансформатор или может быть дроссель. В его работе есть два этапа:

  1. Накопление электрической энергии от сети или от другого источника;
  2. Вывод накопленной энергии на вторичные цепи полумоста.

Во время размыкания и замыкания первичной цепи во вторичной появляется ток. Роль размыкающего ключа выполнял чаще всего транзистор. Узнать параметры которого нужно обязательно использовать справочник. управление же этим транзистором чаще всего полевым выполняется за счёт ШИМ-контроллера.

Управление ШИМ-контроллером

Преобразование сетевого напряжения, которое уже прошло этап выпрямления, в импульсы прямоугольной формы выполняется с какой-то периодичностью. Период выключения и включения этого транзистора выполняется с помощью микросхем. ШИМ-контроллеры этих ключей являются основным активным управляющим элементом схемы. В данном случае как прямоходовой, так и обратноходовой источник питания имеет трансформатор, после которого происходит повторное выпрямление.

Для того чтобы с увеличением нагрузки не падало выходное напряжение в ИИП была разработана обратная связь которая была заведена непосредственно в ШИМ-контроллеры. Такое подключение даёт возможность полной стабилизации управляемым выходным напряжения путём изменения скважности импульсов. Контроллеры, работающие на ШИМ модуляции, дают большой диапазон изменения выходного напряжения.

Микросхемы для импульсных источников питания могут быть отечественного или зарубежного производства. Например, NCP 1252 – ШИМ-контроллеры, которые имеют управление по току, и предназначены для создания обоих видов импульсных преобразователей. Задающие генераторы импульсных сигналов этой марки показали себя как надёжные устройства.

Контроллеры NCP 1252 обладают всеми качественными характеристиками для создания экономически выгодных и надежных блоков питания. Импульсные источники питания на базе этой микросхемы применяются во многих марках компьютеров, телевизоров, усилителей, стереосистем и т. д.

Заглянув в справочник можно найти всю нужную и подробную информацию обо всех её рабочих параметрах.

Преимущество импульсных источников питания перед линейными

Блок питания для шуруповерта 12в своими руками

В источниках питания на импульсной основе видны целый ряд преимуществ, которые качественно выделяют их от линейных. Вот основные из них:

  1. Значительное снижение габаритов и массы устройств;
  2. Уменьшение количества дорогостоящих цветных металлов, таких как медь, используемых в их изготовлении;
  3. Отсутствие проблем при возникновении короткого замыкания, в большей степени это касается обратноходовых устройств;
  4. Отличная плавная регулировка выходного напряжения, а также его стабилизация путём введения обратной связи в ШИМ-контроллеры;
  5. Высокие показатели КПД.

Однако, как и всё в этом мире, импульсные блоки имеют свои недостатки:

  1. Излучение помех, которые могут появляется при неисправных помехоподавляющих цепочек, чаще всего это высыхание электролитических конденсаторов;
  2. Нежелательная работа их без нагрузки;
  3. Более сложная схема с применением большего количества деталей для поиска аналогов которых необходим справочник.

Применение источников питания на основе высокочастотной модуляции (в импульсных) в современной электронике как в быту, так и на производстве, существенно повлияли на развитие всей электронной техники. Они давно вытеснили с рынка устаревшие источники, построенные на традиционной линейной схеме, и в дальнейшем будут только усовершенствоваться. ШИМ-контроллеры при этом являются сердцем этого аппарата и развитие их функциональности и технических характеристик постоянно улучшается.

о работе импульсного источника питания

Источник: https://amperof.ru/elektropribory/impulsnyj-blok-pitaniya.html

Виды источников электропитания

LABOIZNES.RU

ОБОРУДОВАНИЕ И СИСТЕМЫ БЕЗОПАСНОСТИ

ПЕРВИЧНЫЕ — ВТОРИЧНЫЕ — БЕСПЕРЕБОЙНЫЕ И РЕЗЕРВНЫЕ

Правила устройства электроустановок (ПУЭ) определяют такие понятия, как энергетическая система и система энергоснабжения. При этом не конкретизируются устройства, в эти системы входящие.

С чего начинается работа любой электроустановки (от карманного фонарика до персонального компьютера или холодильника)? С подключения к электропитанию.

Общее определение: источник электропитания – это устройство для производства, преобразования электроэнергии, подачи напряжения в аварийных ситуациях.

Под эту категорию подпадает достаточно много устройств. Для большинства потребителей знакомы такие понятия, как электростанции, трансформаторные подстанции, генераторы, аккумуляторы, одноразовые батарейки. Кроме того, каждый держал в руках зарядное устройство для телефона или БП для ноутбука. Это и есть источники питания во всем разнообразии.

Для рядового потребителя взаимодействие с подобными устройствами упрощено до минимума:

  • вилка в розетку;
  • батарейка в корпус;
  • выключатель нажать.

Интерес к устройству возникает лишь при его поломке.

Разберем основные их типы.

Источники первичного питания

К ним относятся устройства, которые генерируют электроэнергию, не имея на входе напряжения. Выполняется преобразование любого другого вида энергии в электрическую. Из ничего получить что-либо невозможно (доказано Эйнштейном). Поэтому генерирующие установки используют силы природы.

Для получения электричества можно использовать три вида энергии: механическую, тепловую, либо световую. Соответственно, любой источник первичного питания относится к этим группам.

Механическая энергия.

С ее помощью вращается ротор генератора, вследствие чего на его обмотках возникает электрический ток. Крутящий момент можно извлечь разными способами:

  1. Гидроэлектростанции получают его за счет перепада давления между уровнями воды (для этого строят плотины). Грамотно спроектированные турбины под непосредственным влиянием этих сил передают вращение на генератор. Это достаточно дешевый способ получения энергии, поскольку течение реки условно бесплатно.
  2. Еще один способ получить пользу из воды – генераторы, работающие от перепада уровня на линии прибоя, или прилива-отлива. Такие установки более сложные в техническом плане, но при отсутствии рядом полноводных рек, работают эффективно.
  3. Ветровые станции также работают не везде. Необходимо постоянное линейное движение воздуха.

    Отношение стоимости производства к выдаваемой мощности на порядок хуже, чем у гидроэлектростанций, однако такие генерирующие системы более экологичны.

Тепловая энергия.

Сразу оговоримся: электричество получают не напрямую от тепла, хотя есть опытные образцы термопар. Но до промышленного применения им еще далеко. С помощью тепла банально кипятится вода, полученный пар вращает турбину. А дальше – как в гидроэлектростанции.

Так что тепловые генераторы – это тоже механика.

Атомная электростанция.

Самый яркий представитель в этой категории – . При ядерном распаде выделяется огромное количество тепла. Вода нагревается очень эффективно, нет зависимости от природных явлений. задача – жесточайший контроль над безопасностью. Экологи разумеется против, но если к ним прислушиваться, придется отказаться от технического прогресса.

Тепловая электростанция.

Энергию получают, сжигая горючие материалы. Это может быть природный газ, уголь, мазут, солярка, и даже дрова. Экологичность генерации напрямую зависит от используемого топлива. Экономически такие установки выгодны лишь там, где в пределах транспортной доступности имеются большие запасы топлива.

Часто ТЭС строят в регионах, где нет возможности получить энергию иным способом (про эффективность в таком случае можно забыть). Просто стоимость возведения атомной станции не всегда оправдывается необходимостью в электричестве. Да и противопоказаний у АЭС слишком много (например, сейсмические риски).

Световая энергия.

Установки обычно называют солнечными электростанциями, хотя это не совсем верно. Фотоэлементы работают не только от прямых солнечных лучей. Для «старта» достаточно обычного дневного света даже при 100% облачности. Преобразования в механику не требуются: фотоэлементы сразу вырабатывают электроток.

Представители Greenpeace и им подобных организаций считают эту энергию самой чистой, однако это в корне неверно. Во-первых, никто не занимался изучением влияния вынужденной тени от огромных площадей солнечных батарей на земную кору. Во-вторых, производство и утилизация фотоэлементов далеко не экологичный процесс.

Тем не менее, наряду с АЭС, они относятся к перспективным.

Недостатков всего два:

  1. Очевидно, что ночью электростанция не работает. Следовательно, необходимо накапливать электроэнергию с помощью аккумуляторных батарей, либо встраивать такие генерирующие системы в некие единые сети, где каждый источник дополняет друг друга.
  2. Стоимость подобных станций слишком высока.

Химические источники питания вроде как держатся особняком, но это также первичные генераторы электроэнергии. Важно: Речь идет о батарейках, не путать с аккумуляторами.

Для получения электричества используется химическая реакция. Несмотря на то, что энергия получается напрямую, без преобразования в механическую, экономика таких источников питания крайне низкая. Высокая стоимость элементов питания и необходимость постоянного обновления, не позволяет использовать эту энергию массово.

В начало

Источники вторичного электропитания

Для получения требуемых параметров электропитания, необходимо синхронизировать всех потребителей с генерирующими системами.

Это невозможно по целому ряду причин:

  • элементная база электронных устройств работает на низком напряжении питания;
  • безопасность использования бытовых приборов: чем ниже напряжение, тем меньше рисков;
  • первичные источники питания расположены на значительном удалении от потребителей: для транспортировки электроэнергии необходимо напряжение в сотни киловольт.

Соответственно, необходимы промежуточные преобразователи параметров между генерирующей системой и потребителем. Эти устройства называются вторичными источниками питания.

Для информации: Определение вторичности относительно. Например, трансформаторная подстанция между электростанцией и вашим домом, относительно генерирующей системы является вторичным источником питания. А по отношению к зарядному устройству вашего смартфона – это первичный источник.

Применимо к электроприборам, если розетку 220 вольт считать первичкой, вторичным является любой блок питания. Вне зависимости от того, встроен он в телевизор, или выполнен отдельным устройством, как в ноутбуке.

Помимо основной задачи: преобразовывать параметры напряжения и тока, источник вторичного питания может выполнять роль стабилизатора.

В начало

Бесперебойные и резервные источники

К этим категориям относятся генерирующие системы, которые обеспечивают питание в случае выхода из строя основных поставщиков энергии. В чем между ними отличие, ведь задача одна?

Бесперебойные блоки питания всегда находятся в режиме «on-line». Это значит, что при пропадании основного питания, мгновенно подключается собственный источник. Наилучший вариант – аккумуляторная батарея, работающая в буферном режиме. Разумеется, необходим преобразователь напряжения, стабилизатор, и пр. Но это тема для другой статьи.

Преимущества очевидны: потребитель практически не замечает перехода на «запасной» источник. Это особенно важно для сохранности данных (на компьютере), или исправности оборудования (например, система управления отопительным котлом в доме).

Недостаток – аккумулятор имеет определенную емкость. То есть, время работы ограничено. Поэтому бесперебойный источник необходим лишь для отсрочки времени: можно сохранить данные, и отключиться. Либо у вас есть время для включения резервного источника питания.

Резервный источник позволяет на 100% обеспечивать питанием объекты, при аварии на генерирующем устройстве. Это может быть автономный генератор, или резервная линия электропитания.

Для подключения требуется время, поэтому эти устройства нельзя отнести к бесперебойникам. Работа «резерва» приводит к дополнительным затратам, поэтому в качестве первичного источника питания он не используется.

Размытость понятий.

Нет четкой границы между «первичкой», «вторичкой» и резервом. Например, аккумулятор вашего планшета является источником бесперебойного питания, пока вы подключены к сети 220 вольт.

А в автономном режиме – это первичный источник. Трансформаторная подстанция (по определению – первичка), может стать резервным источником питания, если в вашем доме установлены солнечные батареи и ветрогенератор.

В начало

2010-2020 г.г.. Все права защищены.
Материалы, представленные на сайте, имеют ознакомительно-информационный характер и не могут использоваться в качестве руководящих документов

Источник: https://labofbiznes.ru/pitanie_istochniki.html

Блок питания

Блок питания – это какой-либо узел радиоэлектронного устройства, который обеспечивает необходимым питанием какое-либо устройство. Все вы знаете, что для работы радиоэлектронных устройств нужно питание, которые они получают извне.

То есть все радиоэлектронные устройства так или иначе потребляют электрический ток. Каждому радиоэлектронному устройству требуется конкретное напряжение и мощность, поэтому, блоки питания “заточены” именно под конкретное устройство.

Именно поэтому встречается огромное множество различных блоков питания и для каждого устройства оно свое.

Характеристики блока питания

Итак, каждый отдельный блок питания обладает своими характеристиками и параметрами. Ниже перечислим их основные параметры.

Тип выходного напряжения

В основном радиоэлектронные устройства питаются переменным и постоянным током. Поэтому, блоки питания могут выдавать переменное или постоянное напряжение. В большинстве случаев используется именно постоянное напряжение.

К блокам питания с постоянным выходным напряжением можно отнести компьютерные блоки питания

а также различные зарядные устройства для ваших гаджетов.

К блокам питания с переменным напряжением можно отнести трансформаторы

А также инверторы. Инверторы – это устройства, которые из постоянного напряжения делают переменное напряжение.

Выходное напряжение

Блок питания выдает какое-либо определенное напряжение, которое требуется для какого-либо конкретного устройства. Поэтому, самый главный параметр – это напряжение в Вольтах, которое выдает блок питания.

Например, для зарядки наших смартфонов требуется блок питания с постоянным напряжение в 5 Вольт, а для того, чтобы горела автомобильная лампочка, нам потребуется блок питания с напряжением в 12 Вольт.

Выходная мощность

Каждый блок питания наряду с выходным напряжением также должен уметь выдавать в нагрузку и требуемую силу тока. Хочу напомнить, что мощность постоянного тока рассчитывается по формуле P=IU, где P – это мощность, I – сила тока, U – напряжение.

Следовательно, мощный блок питания должен уметь выдавать и большую силу тока, если от этого потребует нагрузка. Рассчитать максимальную силу тока, которую способен выдавать такой блок в нагрузку, вы можете по формуле I=P/U.

Но чаще всего силу тока пишут также на самой этикетке блока питания.

Те, кто занимается компьютерами, знают, что на самом компьютерном блоке питания на этикетке написана мощность, которую может выдать блок питания. Поэтому, геймеры берут очень мощный блок питания, так как железо мощного компьютера потребляет очень много электрической энергии.

Трансформаторный блок питания

Трансформаторный блок питания уже почти не используется в современной электронике, так как состоит из громоздкого трансформатора, что делает такой блок питания тяжелым и крупногабаритным. Схема трансформаторного блока питания до боли простая.

На такой схеме в давние времена собирались почти все блоки питания во всем мире. Такая схема отличалась своей надежностью и неприхотливостью. Здесь мы видим трансформатор, диодный мост и конденсатор. Как работает эта схема, я писал еще в этой статье.

На базе этой схемы можно собрать себе самый простой блок питания с регулировкой от 1,2 Вольта и до 37 Вольт и с выходной силой тока до 1,5 Ампер. Его я описывал еще в этой статье.

схема самого простого блока питания

У меня он до сих пор лежит на рабочем столе и служит верой и правдой

Также этот же самый принцип я применил при сборке самого простого зарядного устройства для автомобиля. Подробнее можете ознакомиться по этой ссылке.

самая простая схема зарядного устройства для авто

Импульсный блок питания

Импульсный блок питания строится намного сложнее, но зато обладает также своими плюсами. Это меньшие массо-габаритные свойства, по сравнению с трансформаторным блоком питания. Но здесь также  есть и свои минусы.

Это большее количество радиоэлементов, по сравнению с трансформаторным блоком питания, а также могут быть шумы на выходе. Поэтому, качественные акустические системы и усилители питаются на трансформаторном блоке питания.

Да, там есть некоторые пульсации, но их намного проще отфильтровать, чем высокочастотные шумы импульсного блока питания.

Хотя в импульсном блоке питания и имеются трансформаторы, но они здесь рассчитаны на высокую частоту, что делает их небольшими и недорогими.

Лабораторный блок питания

Лабораторный блок питания – это такое устройство, которые может выдавать значение напряжение в каком-либо диапазоне, который установит пользователь.

Мой лабораторник выглядит вот так.

Источник: https://www.RusElectronic.com/blok-pitanija/

Типы источников питания

Подробности Категория: Школа радиофанатика

     Существует много типов источников питания. Большинство разработано, чтобы преобразовать высокое напряжение электрической сети переменного тока (AC) в соответствующее низкое напряжение, для электроснабжения электронных схем и других устройств. Источник питания может быть разделен на ряд блоков, каждый из которых выполняет специальную функцию.
          Например, стабилизированный источник питания 5В:

Блок-схема стабилизированного источника питания

          Каждый из блоков описан более подробно ниже:

          Трансформатор — понижает высокое напряжение сети переменного тока (AC) к низкому напряжению AC.
          Выпрямитель — преобразовывает переменное напряжение в выпрямленное, но выходное DC является переменным.
          Фильтр – фильтрует DC, преобразуя большие помехи в маленькие.
          Стабилизатор — устраняет помехи, устанавливая выходное DC в постоянное напряжение.

          Электрическая схема и график выходного напряжения источников питания, построенные на основе этих блоков, описаны ниже :

          Только трансформатор
          Трансформатор + выпрямитель
          Трансформатор + выпрямитель + фильтр
          Трансформатор + выпрямитель + фильтр + стабилизатор

Двухполупериодные источники питания

          Некоторые электронные схемы нуждаются в электропитании с положительным и отрицательным выходным, а так же нулевым напряжениями (0V). Они называются двухполупериодные источниками, потому что это все равно, что два обычных источника питания, соединенные вместе как показано на рисунке.
          Двухполупериодные источники имеют три выхода, например у ±9В источника есть выходы: +9В, 0В и -9В.

Двухполупериодный источник

Трансформатор

Понижающий трансформатор

Трансформатор + выпрямитель

          Переменное выпрямленное выходное напряжение является подходящим для ламп, нагревателей и стандартных двигателей. Оно не является подходящим для электронных схем, если они не включают сглаживающий конденсатор.

Трансформатор + выпрямитель + фильтр

          Сглаженное постоянное напряжение имеет небольшие помехи. Оно является подходящим для большинства электронных схем.

Выпрямитель

          Существует несколько способов соединения диодов, чтобы получить выпрямитель для преобразования переменного напряжения в постоянное. Мостовой выпрямитель является самым важным, и он производит все полуволны переменного выпрямленного напряжения.

Двухполупериодный выпрямитель может также быть выполнен только из двух диодов, если используется трансформатор со средней точкой, но этот метод сейчас редко используется, так как диоды стоят дешевле.

Один диод может использоваться как выпрямитель, но он только использует положительные (+) полуволны переменного напряжения, чтобы произвести полуволну, переменного выпрямленного напряжения.

Мостовой выпрямитель

          Мостовой выпрямитель может быть сделан, используя четыре индивидуальных диода, или комплексную сборку, содержащую эти четыре требуемые диода. Он называется двухполупериодным выпрямителем, потому что он использует всю волну переменного напряжения (и положительную и отрицательную части). 1.4В расходуется в мостовом выпрямителе, потому что каждый диод потребляет по 0.

7В, когда проводит и всегда есть два проводниковых диода, как показано на рисунке ниже.

Мостовые выпрямители оцениваются по максимальному току, который они могут пропустить и максимальному обратному напряжению, которому они могут противостоять (это должно быть равно, по крайней мере, тремя значениям действующего значения поставляемого напряжения, таким образом, выпрямитель может противостоять максимальным напряжениям).

          Пары чередующихся диодных соединений, соединены попарно так ,что переменное напряжение AC, преобразуется к одному значению DC.
          Выход: две полуволны переменного выпрямленного напряжения DC (используются все волны переменного напряжения).

Выпрямитель с одним доидом

          В качестве выпрямителя может использоваться один диод, но он производит полуволну, переменного выпрямленного напряжения DC, и имеет пробелы, при отрицательной полуволне переменного напряжения. Трудно сгладить такое напряжение достаточно хорошо, чтобы поставлять в электронные схемы, если они не требуют очень маленького тока, таким образом, сглаживающий конденсатор недостаточно разряжается во время пробелов.

Выпрямитель с одним доидом

          Выход: полуволны переменного выпрямленного напряжения DC (используется только половина волны AC).

Фильтрация

          Фильтрация (сглаживание) выполняется с помощью электролитического конденсатора большой емкости, связанного с источником постоянного тока DC, который работает как емкость, поставляя ток выходу, когда переменное выпрямленное напряжение DC от выпрямителя падает. На рисунке показаны: несглаженное переменное выпрямленное напряжение DC (пунктирная линия) и сглаженное DC (сплошная линия). Конденсаторные заряжается быстро возле максимума переменного выпрямленного напряжения, и затем разряжается после поставки тока к выходу.

          Следует отметить, что сглаживание значительно увеличивает среднее напряжение DC почти до максимального значения (1.4*действующее значение). Например, 6В действующего переменного напряжения AC соответствует полной волне DC приблизительно 4.6В действующего напряжения (1.4В теряется в мостовом выпрямителе), при сглаживании оно увеличивается к почти максимальному значению, дающему 1.4*4.6 = 6.4В сглаженного DC.

          Сглаживание не является идеальным из-за падения напряжения конденсатора во время его разрядки, что вносит небольшое напряжение пульсаций. Для многих схем пульсации, которые составляют 10 % напряжения питания, является допустимыми, и уравнение ниже позволяет определить необходимое значение емкости для сглаживающего конденсатора. Конденсатор большой емкости вносит меньшие пульсации.

Значение емкости конденсатора должно быть удвоено, когда полуволна DC сглажена.

Сглаживающий конденсатор с 10% пульсацией,С = (5*Io)/(Vs*f)

С — ёмкость конденсатора в Фарадах (Ф);
Io — выходной ток от источника питания в Амперах (A);
Vs — напряжение питания в Вольтах (В), это — максимальное напряжение несглаженного напряжения;
f — частота источника переменного напряжения в Герцах (Гц), 50 Гц в Великобритании.

Стабилизатор

          
Фотография регулятора напряжения Быстрая Электроника

          Интегральный стабилизатор напряжения (ICs) совместим с постоянным (как правило, 5, 12 и 15В) или переменные выходным напряжением. Они также оцениваются по максимальному току, который они могут пропустить. Отрицательное регулирование напряжения доступно, главным образом для использования в двухполупериодных схемах.

Большинство регуляторов включает некоторую автоматическую защиту от чрезмерного тока (защита от перегрузки) и перегрева (тепловая защита).
          Большинство интегральных стабилизаторов постоянного напряжения имеют 3 электропровода и выглядят как транзисторы большой мощности, такие как 7805 +5В 1A стабилизатор, показанный справа.

Они включают отверстие для того, чтобы приложить теплоотвод в случае необходимости.

Стабилизатор со стабилитроном (параметрический стабилизатор)

          Для источников питания небольшого тока простой регулятор напряжения может быть сделан из резистора и стабилитрона, связанных противоположно как показано в рисунке.

Стабилитроны оцениваются их напряжением пробоя Vz и максимальной мощностью Pz (как правило, 400 мВт или 1.3Вт).
          Резистор ограничивает ток (как фоторезистор).

Ток через резистор является постоянным, когда нет никакого выходного тока, весь ток течет через стабилитрон и его номинальная мощность Pz, должна быть достаточно большой, чтобы противостоять этому.

          Выбор стабилитрона и резистора:

1. Напряжение стабилитрона Vz является требуемым выходным напряжением;
2. Входное напряжение должно быть на несколько вольт, больше чем Vz (оно должно учитывать небольшие колебания входного напряжения вследствие пульсаций);
3. Максимальный ток Imax — требуемый выходной ток, плюс 10 %;
4. Мощность стабилитрона Pz определяется максимальным током: Pz> Vz*Imax;
5. Сопротивление резистора: R = (Vs — Vz)/Imax;
6. Номинальная мощность резистора: P > (Vs — Vz)*Imax;

Пример: требуемое выходное напряжение 5V, требуемый выходной ток, 60mA.

1. Vz = 4.7V (ближайшее подходящее значение);
2. Vs = 8В ( должно быть несколько вольт, больше чем Vz);
3. Imax = 66мA (ток выхода плюс 10 %);
4. Pz>4.7V*66mA = 310 мВт, выбираем Pz = 400 мВт;
5. R = (8V — 4.7V)/66mA = 0.05КОм = 50Ом, выбираем R = 47Ом;
6.Оцениваем мощность резистора P>

(8V — 4.7V)*66mA = 218 мВт, выбаем P = 0.5Вт

John Hewes 2008, The Electronics Club

Перевод: Фесенко Д.В.

Источник: http://radiofanatic.ru/shkola-radiofanatika/292-tipy-istochnikov-pitaniya.html

Источник тока

Источник тока – элемент питания электрической цепи, обеспечивающий постоянное потребление, измеренное амперами, либо заданную форму закона изменения параметра. Так работают сварочные аппараты, каждой толщине металла соответствует номер (диаметр) электрода. Процесс обеспечен постоянным током. В противном случае начинается срыв дуги, происходят другие неприятные эффекты.

Отличие реального источника от идеального

Известно, мощность источника питания электрической цепи ограничена. В результате увеличение нагрузки вызывает изменение параметров. Общеизвестны скачки напряжения гаражных кооперативов, дач, прочих специфичных объектов. Подстанция выделяет ограниченный ресурс, потребление бывает немаленьким. В первую очередь, подразумеваются нагревательные приборы (воды), сварочные аппараты.

Таким образом, розетка выступает источником напряжения. Вольтаж сильно зависит от поведения потребителей. Замечено, утренние часы подстанции перегружают, соответствующим образом учитывается областями при тарификации. Что касается идеальных источников, подразумевается, параметры постоянные. До некоторых пор встретить подобное оборудование представлялось невозможным, современные технологии рамки ограничений сильно расширили.

Инвертор сварочный

Сварочный инвертор IWM 220 сохраняет работоспособность в диапазоне питающих напряжений 180 – 250 вольт, выдавая постоянное действующее значение тока на зажимы. Электронные блоки питания достигают столь высоких показателей путем гибкого регулирования режимов работы. Брать инверторы, принцип действия основан на выпрямлении, фильтрации напряжения 220 вольт, последующей нарезкой пачками импульсов. Варьированием скважности посылок, длиной достигается изменение тока.

Измерительный датчик Холла влияет, напрямую или опосредованно, на напряжение смещения силового ключа. Возможны другие, процессорные, схемы управления выходными параметрами приборов. В последнем случае заботы забирает процессор, несущий соответствующую программу, заложенную в память цифровым кодом.

Для сварки используются переменный и постоянный токи, для черных и цветных металлов. Важно понимать: источник способен поддерживать любой закон изменения параметров. Это признаётся отличительной особенностью, предназначением. Обеспечивает правильное функционирование потребителей.

Требования к факторам питания

В учебниках физики приводятся в качестве примеров источников тока:

Несложно заметить, сплошь гальванические источники питания химического принципа действия. Автоводитель знает: аккумулятор бессилен выдать постоянный ток, напряжение. Мощность ограничена скоростью протекания химических реакций на пластинах, обкладках. В результате параметры не остаются постоянными.

Лучший пример источника питания тока, напряжения – инвертор. Электроника гибко изменяет параметры устройства, добиваясь достижения нужного эффекта. На выходе переменные, постоянные напряжения, токи. В зависимости от возникающих потребностей. В персональном компьютере уйма питающих напряжений: для жестких дисков, процессора, DVD-приводов. 5, 12, 3,3 В. У каждого предназначение, несколько предназначений.

Протекание тока в цепи

Таким образом, потребитель определяет, нужен постоянный ток, либо требуется напряжение, сформированное по определенному закону. Если брать сварку, скорость протекания через плазму зарядов определяет рабочую температуру процесса, напрямую предопределяет условия существования дуги, глубину плавления металла. Технологи давно просчитали условия, определили экспериментально, руководство сварочного аппарата пишет следующее:

  • толщина листа – 3 мм;
  • диаметр электрода – 3,2 мм;
  • рабочий ток процесса 100 – 140 А.

Сварщик молниеносно выставляет указанные параметры на корпусе IWM 220, берет электрод нужного диаметра, обжимает ухватом, заводит второй выход на землю. Потом надевает маску, начинает легонько постукивать детали, получая искру.

Не слишком обеспокоен результатами труда, отраслевое пособие промышленности сообщает, с какой скоростью двигаться вдоль шва, под каким углом наблюдать результат процесса. Сварщик твердо знает, чего делать не нужно.

Чтобы удостовериться, специальная комиссия по результатам тестов (выполнение определенных швов) присваивает рабочему разряд (ощутимо влияет на спектр полномочий, заработную плату).

Итак, род тока определяют потребности идущего процесса. В большинстве случаев требуется напряжение, часто приборы первоначально требовали постоянства тока. Прежде это обогреватели различного толка, основывающие принцип действия законом Джоуля-Ленца. Мощность, преобразующаяся в тепло, определяется размером сопротивления, протекающим током.

В бытовых целях удобнее поддерживать напряжение. Помимо обогревателей имеется множество других приборов. Прежде всего электроника. Напряжение на активном сопротивлении проводника линейно зависит от тока. Нет разницы, что поддерживать постоянным. Отчего тогда при сварочном процессе приходится стабилизировать.

Рука сварщика неспособна двигаться с достаточной твердостью, флуктуации воздуха постоянно меняют длину дуги. Имеются другие помехи. Напряжение на участке непостоянно. Следовательно, ток менялся бы (согласно закону Ома). Недопустимо по причинам описанным выше: изменится температура, технологический процесс пойдет неправильным путем. Приходится поддерживать постоянным ток, не напряжение.

Как практики получают ток заданной формы

Исторически первыми открыты гальванические источники тока. Произошло в 1800 году. Гением, подарившим человечеству первый источник питания, является Алессандро Вольта. Последовала плеяда открытий. Первым измерителем стал гальванометр – прибор, регистрирующий силу электрического тока. Принцип действия новинки, представленной миру Швейггером, основывался на взаимодействии магнитных полей проводника, стрелки компаса.

Вопрос важен по простой причине, для поддержания нужного закона тока нужно измерить физическую величину. Первые гальванометры оценивали параметр по силе магнитного поля, создаваемого проводником. В дальнейшем заложило основу действия первых тестеров. Как работает современное оборудование?

В зарядных устройствах поддерживается постоянным напряжение. Ток измеряется с целью оценки полноты наполненности батареи. Благодаря продуманному подходу, телефон способен сигнализировать мнемонически о ходе процесса.

Когда батарея полна, полоса зарядки полностью закрашивается (первые сотовые телефоны), либо исчезает (на многих смартфонах в выключенном состоянии).

Ход процесса регистрируется датчиком Холла: только исчезают импульсы, считается, устройство не нуждается в дальнейшей подзарядке.

На основе указанного эффекта первое время было возможным регистрировать наличие/отсутствие тока. С развитием науки, техники появились преобразователи на основе соединений индия, отличающиеся неплохими метрологическими качествами.

По величине выходного напряжения способные оценивать параметры тока. Современные аналого-цифровые преобразователи измерения позволят перевести разницу потенциалов в цифры, понятные процессору.

Последний выполняет необходимые операции по управлению устройством, способствуя получению тока заданной формы.

Инвертор действует схожим образом. Последовательности импульсов, нарезаемые ключом, проходят малогабаритный параметр в неизменном виде (форма графика), с измененными характеристиками.

Остается только измерить нужные величины, произвести интегрирование на некотором участке. В результате современный сварочный аппарат по определению защищен против залипания: при резком возрастании тока питания отключается.

Имеются у инверторов некоторые другие полезные качества, обеспечиваемые электроникой. Вот почему сварщикам нравятся аппараты.

В мощных цепях ток контролируется трансформаторами. Датчики Холла с десятками, сотнями амперов не работают напрямую. Типичный лимит составляет десятки мА.

Используется принцип, схожий с имеющим место быть в цифровых мультиметрах: из потока движущихся по электрической цепи зарядов вычленяется некоторая малая часть. Далее пропорцией оценивается полная величина. Трансформаторы тока действуют аналогичным образом.

Не имея первичной обмотки, путем электромагнитной индукции передают малую часть энергии поля измерительному средству (например, счетчику, аппаратуре контроля).

Отличительные особенности

Из сказанного понимаем следующее:

  1. Физика под источником тока понимает агрегат, формирующий на выходе постоянный параметр. Практика часто предъявляет иные требования. Хотя чаще ток требуется постоянный.
  2. На схемах источник тока обозначают по-другому, нежели источник ЭДС. Круг с двумя галками. Иногда рядом стоит латинская литера I. Сие помогает решать согласно уравнениям Кирхгофа задачи нахождения условий элементов электрической цепи.
  3. Форма закона генерируемого тока определяется нуждами потребителя. Большинство бытовых приборов питается напряжением. Постоянство тока, особая форма не нужны, даже приносят вред. Мясорубка при заклинивании вала костью требует больше энергии. На это настроена регулирующая и защитная электроника.
  4. Мощность, отдаваемая идеальным источником, растет пропорционально активному сопротивлению нагрузки. В реальности видим некий лимит, выше которого параметры начнут отличаться от заданных.

Проще говоря, исторически с точки зрения практики удобнее постоянным поддерживать напряжение, не ток. Термин, рассматриваемый разделом, вызывает много затруднений у людей посторонних, далеких электронике, вполне сведущих в технике. Итак, источник тока – отвечает за поддержание нужной формы тока. Чаще требуется постоянный.

Величина тока послужит целям регулирования. Искрение коллекторного двигателя сопровождается возрастанием нагрузки. Растет потребляемый ток, цепи контроля повышают напряжение на обмотках с целью преодолеть возникший «кризис». Приводит к необходимости контроля величины тока. В мясорубках задачу решает цепь обратной связи, формирующая угол отсечки ключом входного напряжения.

Пытаясь сохранить постоянной разность потенциалов, приборы варьируют потребление тока. В результате запрашиваемая от подстанции мощность меняется, эффект приводит к проседанию вольтажа. Визуально наблюдаем медленным миганием лампочек накала (энергосберегающие несут в цоколе драйвер для поддержания постоянства напряжения). Аналогичным образом устройства показали бы проседание тока при неизменном напряжении.

Источник: https://VashTehnik.ru/enciklopediya/istochnik-toka.html

Источник питания. Виды источников питания

Источник питания. Виды источников питания.

Источник питания (ИП) − электронное устройство, предназначенное для обеспечения электрическим питанием различных устройств (нагрузок, потребителей).

Основные виды источников питания

Первичные ИП − преобразователи различных видов энергии в электрическую.

Например: гидроэлектростанция − ГЭС (потенциальная гравитационная энергия воды преобразуется в электрическую энергию), химические источники тока (ХИТ), аккумуляторы,  топливные элементы (химическая энергия преобразуется в электрическую), дизель-генераторная установка − ДГУ (химическая энергия преобразуется в механическую, затем в электрическую), ветрогенератор (кинетическая энергия частиц воздуха преобразуется в электрическую) и др.

В силовой электротехнике к первичным источникам питания можно отнести аккумуляторные батареи, дизельные- газовые- бензиновые генераторные установки, генерирующие электростанции, ИБП в автономном режиме работы и др..

Вторичные ИП − сами электроэнергию не генерируют, а служат только для ее преобразования и обеспечения требуемых параметров напряжения, частоты, пульсаций напряжения и др.
В силовой электротехнике вторичными источникам питания считаются стабилизаторы напряжения, источники бесперебойного питания, преобразователи напряжения, выпрямители, инверторы и др.

Основные функции источников питания

  • Обеспечение передачи мощности
  • Преобразование формы напряжения
  • Коррекция коэффициента нелинейных искажений (КНИ) напряжения
  • Преобразование величины напряжения
  • Стабилизация напряжения
  • Защита по току и напряжению
  • Гальваническая развязка цепей
  • Коррекция коэффициента мощности нагрузки
  • Коррекция КНИ тока нагрузки
  • Контроль работы и управление параметрами
  • Генерация энергии за счёт преобразования её в электрическую энергию из энергии др. видов (из химической энергии и др.)
  • Обеспечение бесперебойного питания нагрузки при авариях на основных источниках или при переключении между вводами энергии
  • Для многовходовых ИП: подключение(коммутация ) к нагрузке требуемого входа(ввода) энергии
  • Стабилизация напряжения, тока, частоты
  • Для многоблочных ИП (построенных по схеме избыточного резервирования) переключение блоков и распределение мощности между блоками

 

Источник: https://www.xn--80aacyeau1asblh.xn--p1ai/reference/terminology/229-power-supp

Понравилась статья? Поделиться с друзьями:
ЭлектроМастер
Как сделать регулируемый блок питания своими руками

Закрыть