Что такое электрическая цепь

Электрическая цепь: контур, схема, расчет, разветвленные и линейные цепи

что такое электрическая цепь

При обустройстве новой квартиры или дома, обновлении или ремонте жилья приходится сталкиваться с элементами, предназначенными для протекания электрического тока. Важно знать, что представляет собой электрическая цепь, из чего она состоит, зачем нужна схема, и какие расчеты необходимо выполнить.

Что такое электрические цепи

Электрической цепью называют совокупность устройств, необходимых для прохождения по ним электрического тока

Электрическая цепь – это комплекс различных элементов, соединенных между собой. Она предназначена для протекания электрического тока, где происходят переходные процессы. Движение электронов обеспечивается наличием разности потенциалов и может быть описано при помощи таких терминов, как напряжение и сила тока.

Внутренняя цепь обеспечивается подключением напряжения, как источника питания. Остальные элементы образуют внешнюю сеть. Для движения зарядов в источнике питания поля потребуется приложение сторонней силы. Это может быть обмотка генератора, трансформатора или гальванический источник.

Чтобы такая система правильно функционировала, ее контур должен быть замкнутый, иначе ток протекать не будет. Это обязательное условие для согласованной работы всех устройств. Не всякий контур может быть электрической цепью. Например, линии заземления или защиты не являются таковыми, поскольку в обычном режиме по ним не проходит ток. Назвать их электрическими можно по принципу действия. В аварийной ситуации по ним проходит ток, а контур замыкается, уходя в грунт.

В зависимости от источника питания напряжение в цепи может быть постоянным или переменным. Батарея элементов дает постоянное напряжение, а обмотки генераторов или трансформаторов – переменное.

Основные компоненты

Инвентор электрического тока

Все составные части в цепи участвуют в одном электромагнитном процессе. Условно их разделяют на три группы.

  • Первичные источники электрической энергии и сигналов могут преобразовывать энергию неэлектромагнитной природы в электрическую. Например, гальванический элемент, аккумулятор, электромеханический генератор.
  • Вторичный тип, как на входе, так и на выходе имеет электрическую энергию. Изменяются только ее параметры – напряжение и ток, их форма, величина и частота. Примером могут быть выпрямители, инверторы, трансформаторы.
  • Потребители активной энергии преобразовывают электрический ток в освещение или тепло. Это электротермические устройства, лампы, резисторы, электродвигатели.
  • К вспомогательным компонентам относят коммутационные устройства, измерительные приборы, соединительные элементы и провод.

Источник: https://StrojDvor.ru/elektrosnabzhenie/ponyatie-elektricheskoj-cepi-i-ee-sostavnye-chasti/

Внутренняя и внешняя электрическая цепь

что такое электрическая цепь

Основные элементы электроцепи

Внешние и внутренние составляющие

Базовые законы электроцепей

Физика определяет электрическую цепь как совокупность разнородных элементов, связывающихся посредством проводников, и предназначенную для протекания тока.

Элементный состав электроцепей достаточно обширен. Можно выделить следующие их типы:

  • нелинейные;
  • линейные;
  • активные;
  • пассивные.

Основные элементы электроцепи

Любая электрическая цепь состоит из разнородных взаимодействующих объектов и технических устройств, создающих специализированный маршрут для протекания по нему электрического тока. Для понимания и объяснения данных процессов физики используют следующие понятия:

  • Напряжение – физическая величина, равная затраченной электрополем энергии, необходимой для перемещения заряда между полюсами, относительно данного заряда;
  • Электродвижущая сила – скалярная величина, описывающая функционирование сил неэлектрической природы, присутствующих в переменных или постоянных квазистационарных электроцепях.

Ток – движущийся в определенном направлении поток заряженных частиц.

Все составные части электрической цепи условно подразделяются на 3 группы:

  • элементы питания, производящие электрическую энергию;
  • «приемники» — устройства, получающие и преобразующие подающееся на них электричество;
  • «передатчики» — провода и другие комплектующие, позволяющие добиться необходимого – по уровню и качеству – напряжения.

Внешние и внутренние составляющие

Даже самая простая цепь включает в себя: источник энергии, один или множество последовательно соединенных «приемников» электричества, а также необходимые для взаимодействия провода.

Внутренняя часть формируется за счет источника энергии, а потребитель, использующий ее, образует ее внешнюю часть (в эту систему также входят все измерительные устройства, коммутаторы и проводка).

Внешнюю цепь (участок цепи) образуют – один или множество — «приемников» электрической энергии, провода, прочие устройства, выполняющие вспомогательные функции. Тогда как внутренняя цепь (внутренний участок) состоит непосредственно из самого источника.

При разработке расчетных схем важно учесть элементы цепи, имеющие собственное сопротивление (электронагревательные устройства, электролампы и проч.). На бумагах, описывающих будущую электроцепь, они указываются как резисторы с сопротивлением. Это же относится и к объектам, обладающим индуктивностью (обмотка электрических двигателей, генераторов), а также емкостью (трансформаторы).

На схеме их нужно искать в местах скопления индуктивных катушек и конденсаторов. При планировании и предварительных расчетах цепи часто указывают идеальные источники энергии, имеющие нулевое внутреннее сопротивление: Ro=0. Однако реальные источники всегда обладают уровнем сопротивления больше, чем 0. И хотя на схеме он обозначается как «нулевой» резистор (Ro), впоследствии сопротивление реального источника учитывается при построении цепи в натуре.

Вспомогательные элементы цепи (защитные приборы, включающие/выключающие устройства, измерительные аппараты) имеют малое сопротивление, почти никогда не влияющее на уровень напряжения. Соответственно, их можно не учитывать и не обозначать на схемах.

Как только контур внутренней и внешней частей электроцепи замыкается, в ней появляется ток. Сила тока зависит от того, какое количества энергии пропускает – за определенный временной промежуток – сечение «проводника». Формула расчета для переменного и постоянного тока отличается:

(для постоянного);

(для переменного).

Функционирование тока внутри сети тесно связано с преобразовательными процессами, непрерывно происходящими в ее элементах. Возникновение электричества из другой энергии сопровождается появлением возбуждения в устройстве питания электродвижущей силы (ЭДС).

Внешний участок цепи, как и источник питания, имеет определенный параметр сопротивления, препятствующий пропуску электротока. Величина сопротивления зависит от размера и формы «проводника», а также материала, из которого сделан:

Еще одна величина – проводимость – обратная сопротивлению:

Закон Ома описывает взаимодействие ЭДС, напряжения, сопротивления и тока:

Базовые законы электроцепей

При исследовании как сложных, так и простых цепей обычно используются закон Ома, Джоуля-Ленца, Ампера, Фарадея и Кирхгофа. В зависимости от того, анализируется ли участок или же вся цепь, применяются разные варианты закона Ома. Например, на отдельном участке электроцепи ток находится в отношениях обратной пропорции к сопротивлению на данном отрезке и прямой пропорции – к напряжению:

Произведение тока на уровень сопротивления (на конкретном отрезке цепи) приводит к его падению. Ток в цепи пропорционален ЭДС источника энергии и обратно пропорционален сумме величин сопротивлений (внешнего и внутреннего типов) источника питания. То есть:

Закон, выведенный Джоулем-Ленцем, служит для подсчета суммарной тепловой энергии, приходящейся на сопротивления из-за прохождения по нему тока. Формула его такова:

Закон Фарадея (электромагнитной индукции) учитывает в электроцепях отношения:

Между колебаниями магнитного потока, взаимодействующего с поверхностью, ограниченной контуром цепи, и индуктированием ЭДС.

Индуктированием ЭДС проводника (при проникновении магнитного поля)

Согласно данному закону, индуцируемая в цепи (ЭДС в связи колебаниями магнитного потока, идущего через ограниченную контуром поверхность), равна скорости с которой, он изменяется, но с отрицательным знаком. Формула рассчитывается так:

Процесс замены отрезков электроцепи, где один элемент посредством параллельного и последовательного соединения взаимодействует с несколькими другими элементами, носит наименование эквивалентных преобразований. При таком изменении напряжение всей цепи и ток сохраняют свои прежние значения.

Последовательное соединение характеризуется одной важной особенностью: значение тока в таких частях цепи равно для всех ее составляющих элементов (и последовательных тоже). Данный факт позволяет сделать вывод, что напряжение прямо пропорционально уровню сопротивления на данном участке для каждого из последовательно подключенных элементов.

Источник: https://sciterm.ru/spravochnik/vnutrennyaya-i-vneshnyaya-elektricheskaya-cep/

1.2. Электрическая цепь и ее элементы

что такое электрическая цепь

Электрическаяцепьсовокупностьустройств(элементов), предназначенныхдля направленного движения электрическихзарядов(электрического тока) исвязанных с ним электромагнитныхпроцессов.

Электрическаяцепь служитдля генерирования, передачи и преобразованияэлектрической (электромагнитной) энергиии сигналов.

Основные элементыэлектрической цепи – источники, приемникии линии передачи.

Источникэлектрической энергии и сигналовустройство,преобразующее различные виды энергиинеэлектромагнитной природы вэлектромагнитную(гальванический элемент, аккумулятор,электромеханический генератор).

Приемникэлектрической энергии и электрическихсигналовустройство,преобразующее электрическую энергиюв другие виды энергии(электротермические устройства,электрические лампы, резисторы,электрические двигатели).

Линияпередачи электрической энергии иэлектрических сигналов– проводники (материалы, среды, имеющиесвободные заряды) и электромагнитныеполя, с помощью которых осуществляетсяпередача электрической энергии исигналов от источников к приемникам.

Кроме того,элементами электрической цепи могутбыть преобразовательные, коммутационныеи измерительные устройства (приборы).

Преобразовательэлектрической энергииустройство,преобразующее параметры(напряжение, ток, их форму, величину,частоту) электромагнитнойэнергии(трансформаторы, выпрямители, инверторы,преобразователь частоты).

Коммутационныеустройства предназначены для изменения режимаработы электрической цепи: отключениеи включение источников, приемников,изменения параметров участков цепи.Это контакторы, переключатели, выключатели,разъединители.

Измерительныеустройстваприборыдля измерения различных параметровэлектромагнитных процессов, протекающихв электрической цепи(амперметры, вольтметры, ваттметры ит.д.).

Схемаэлектрической цепиграфическоеизображение электрической цепи,содержащее условные изображения ееэлементов и показывающее соединениеэтих элементов.

ЕСКД «Обозначенияусловные графические в схемах». ГОСТ2.721-74 – 2.758-81.

Приемники, источники:

–элементгальванический;

–лампанакаливания;

–генераторпостоянного тока электромеханическоготипа;

–резистор;

–потенциометр;

–реостат;

–катушкаиндуктивности;

–конденсатор.

Коммутационные устройства:

–нормальноразомкнутый контакт;

–нормальнозамкнутый контакт;

–переключающийконтакт.

Показывающиеприборы (A,V, W):

Преобразовательные устройства:

–воздушныйтрансформатор;

–диодныймост (двухполупериодный выпрямитель);

–инвертор.

Принципиальнаясхема электрической цеписхемаэлектрической цепи, изображающаясоединение реальных элементов этойцепи.

Пример.Простейшая электрическая цепь –гальванический элемент, соединенный слампой накаливания через выключательс помощью соединительных проводов. Дляизмерения напряжения и тока в цепьвключены вольтметр и амперметр.

Функциональная(структурная, блок-схема) – схемаэлектрической цепи, изображающаясоединение отдельных блоков сложнойэлектрической цепи, выполняющихопределенные функции(усиление, выпрямление, инвертированиет.д.)

Двухполюсникчастьэлектрической цепи, которая рассматриваетсяотносительно двух каких-либо зажимов.

Четырехполюсникчастьэлектрической цепи, имеющая два входныхи два выходных зажима.

Активнаяцепьчастьэлектрической цепи, в которой действуютисточники электрической энергии.

Пассивнаяцепьчастьэлектрической цепи, в которой нетисточника электрической энергии.

    1. Схема замещения электрической цепи

Ни функциональная, ни принципиальнаясхемы электрических цепей не отражаютколичественную сторону электромагнитныхпроцессов, которые имеют место в элементахцепи и которые определяют режим работыэтой цепи независимо от конструкции ифизической природы этих элементов.

Схема замещения(расчетнаяматематическая модель, эквивалентная)электрической цеписхемаэлектрической цепи, изображающаясоединения абстрактных, идеальныхэлементов, с достаточным приближениемотображающих электромагнитные процессыв электрической цепи.

В теории электрических цепей реальныеэлементы, из которых составляетсяэлектрическая цепь, заменяютсяабстрактными идеальными элементами сопределенными свойствами.

Какие же это элементы? И какиеэлектромагнитные процессы они отражают?

Источник: https://studfile.net/preview/6382911/page:3/

Электрическое напряжение: определение, формулы и как измеряется

В данной статье мы подробно разберем что такое напряжение, как просто его представить и измерить.

Определение

Напряжение — это электродвижущая сила, которая толкает свободные электроны от одного атома к другому в том же направлении.

В первые дни электричества напряжение было известно как электродвижущая сила (ЭДС). Именно поэтому в уравнениях, таких как закон Ома, напряжение представлено символом Е.

Алессандро Вольта

Единицей электрического потенциала является вольт, названный в честь Алессандро Вольта, итальянского физика, жившего между 1745 и 1827 годами.

Алессандро Вольта был одним из пионеров динамического электричества. Исследуя основные свойства электричества, он изобрел первую батарею и углубил понимание электричества.

Представление напряжения

Легче всего понять напряжении, представив давлении в трубе. При более высоком напряжении (давлении) будет течь более сильный ток. Хотя важно понимать, что напряжение (давление) может существовать без тока (потока), но ток не может существовать без напряжения (давления).

Напряжение часто называют разностью потенциалов, потому что между любыми двумя точками в цепи будет существовать разница в потенциальной энергии электронов. Когда электроны протекают через батарею, их потенциальная энергия увеличивается, но когда они протекают через лампочку, их потенциальная энергия будет уменьшаться, эта энергия покинет цепь в виде света и тепла.

ЭТО ИНТЕРЕСНО:  Что такое генератор переменного тока

Возьмите, например, обычную 1,5-вольтовую батарею AA, между двумя клеммами (+ и -) есть разность потенциалов 1,5 Вольт.

Напряжение или разность потенциалов — это просто измерение количества энергии (в джоулях) на единицу заряда (кулона). Например, в 1,5-вольтовой батарее AA каждый кулон (заряд) будет получать 1,5 вольт или джоулей энергии.

Напряжение = [Джоуль ÷ Кулон]

1 вольт = 1 джоуль на кулон

100 вольт = 100 джоулей на кулон

1 кулон = 6 200 000 000 000 000 000 электронов (6,2 × 10 18 )

В чем измеряется напряжение

Мы измеряем напряжение в единицах «Вольт», которые обычно обозначаются просто буквой «V» на чертежах и технической литературе. Часто необходимо количественно определить величину напряжения, это делается в соответствии с единицами СИ, наиболее распространенные величины напряжения, которые вы увидите:

  • мегавольт (мВ)
  • киловольт (кВ)
  • вольт (В)
  • милливольт (мВ)
  • микровольт (мкВ)

Напряжение всегда измеряется в двух точках с помощью устройства, называемого вольтметром. Вольтметры являются либо цифровыми, либо аналоговыми, причем последний является наиболее точным.

Вольтметры обычно встроены в портативные цифровые мультиметровые устройства, как показано ниже, они являются распространенным и часто важным инструментом для любого электрика или инженера-электрика.

Обычно вы найдете аналоговые вольтметры на старых электрических панелях, таких как распределительные щиты и генераторы, но почти все новое оборудование будет поставляться с цифровыми счетчиками в качестве стандарта.

Портативный цифровой мультиметр с функцией вольтметра

На электрических схемах вы увидите устройства вольтметра, обозначенные буквой V внутри круга, как показано ниже:

Расчет напряжения

В электрических цепях напряжение может быть рассчитано в соответствии с треугольником Ома. Чтобы найти напряжение (V), просто умножьте ток (I) на сопротивление (R).

Напряжение (V) = ток (I) * сопротивление (R)

V = I *R

Пример

Ток в цепи (I) = 10 А
Сопротивление цепи (R) = 2 Ом

Напряжение (V) = 10 А * 2 Ом

Ответ: V = 20В

Резюме

  • Напряжение — это сила, которая перемещает электроны от одного атома к другому
  • Напряжение также известно как разность потенциалов
  • Напряжение измеряется в единицах «вольт» (В)
  • Батареи увеличивают потенциальную энергию электронов
  • Лампочки и другие нагрузки уменьшают потенциальную энергию электронов
  • Напряжение измеряется с помощью вольтметра
  • Напряжение цепи можно рассчитать путем умножения тока и сопротивления

Источник: https://meanders.ru/naprjazhenie.shtml

Электрическая цепь и её схема

Какие ассоциации возникают при словосочетании электрическая цепь? Должно быть сразу возникает картина в виде источника питания, простой батарейки, потом от неё идут провода, которые подсоединены к лампочке, а её нить накала светится ярким светом. Это простейшая схема электрического фонарика с лампой накаливания, только вот ещё тумблер подключить и всё готово. Это бытовая, обыденная ассоциация, которая скорее всего возникнет у не специалиста в электротехнике.

Какая ассоциация возникает с электрической цепью у специалиста электротехника? Пожалуй, в первую очередь, это будет осветительная сеть, ну или электрическая цепь, где подключается асинхронный двигатель через магнитный пускатель. Это уже профессиональная ассоциация.

У физика, который занимается наукой и исследованиями в области электродинамики электрическая цепь будет ассоциирована с электромагнитными полями, источниками полей, с приборами и научной аппаратурой.

Занимающийся практической электроникой скорее всего представить печатную плату со множеством контактных дорожек на ней и впаянных в неё элементов. Специалист разработчик микроэлектронных схем, который создаёт новые микросхемы, чипы, драйвера устройств, будет ассоциировать электрическую цепь с топологией микросхем (микрочип).

Все эти ассоциации будут верными, но они не являютсяопределениями электрической цепи. Понимание и знание того, что такое электрическая цепь и в чём её отличие от электрической схемы — это ключ ко всей теории электрических цепей.

Определение электрической цепи

Одно из самых лучших определений электрической цепи имеет следующее содержание.

Совокупность устройств и объектов, образующих пути для электрического тока, электромагнитные процессы в которой могут быть описаны с помощью понятий об электродвижущей силе, токе и напряжении, называют электрической цепью

Это полное определение, но возможен его сокращённый минимизированный вариант, который может быть вот таким:

Электрическая цепь — это соединение элементов образующих контур, в котором возможно существование электрического тока

Следует разобрать логически эти определения, чтобы получить тот самый ключ, о котором сказано выше. Давайте попробуем по порядку сделать такой разбор.

Логический разбор определений электрической цепи

В определениях, и в полном и кратком, речь идёт о совокупности и соединении элементов (устройств и объектов). Это означает, что не разрозненно, что имеется какое-то сочетание, объединение тех самых элементов. Это говорит нам также о том, что элементы способны к такому соединению. Далее можно сделать вывод, что должны существовать способы и виды таких соединений. Назовём это первым условием определяющим электрическую цепь.

Слова о том, что такое соединение образует пути (контур), в котором может существовать электрический ток — это второе условие определяющее электрическую цепь. Отсюда следует, что возможны такие сочетания элементов, в которых тока быть не может в принципе. Самое важное здесь — это электрический ток, который хотя бы потенциально может осуществится в путях и контуре.

Дело в том, что путь тока всегда замкнут, такова его природа. Поэтому путь всегда замкнут и он именуется контуром. Из этого второго условия следует, что существуют пути, которые можно назвать ветвями, и контуры, без которых ток не может образовать замкнутый путь. Отсюда возникает топология электрических цепей.

Ток обязательно имеет источник, поэтому как минимум один элемент будет являться источником тока (ЭДС).

Остаётся только уточнение из полного определения, где говорится о свойстве совокупности устройств и объектов (элементов). В ней могут происходить электромагнитные процессы, что вполне объяснимо самой природой электрического тока. Там где не может быть потока электричества (ток), не может быть и электромагнитных явлений. Отсюда следует, что наличие электромагнитных процессов говорит нам о существовании тока.

Зачем же нужно такое уточнение? Есть такое явление, как электромагнитная волна, которое для краткости можно объяснить как возмущение в электромагнитном поле. Для того, чтобы отмежеваться от волновых явлений, дальше по тексту сказано, что электромагнитные процессы ограничиваются лишь теми, которые описываются с помощью понятий об ЭДС, токе и напряжении.

Это фактически третье условие, которое не заметно до тех пор, пока ничего не известно об электромагнитных волнах и излучении.

Чем глубже будут проанализированы логически определения, чем лучше знания слов, образующих определение, тем лучше (глубже) будут поняты эти определения. Такую процедуру можно провести с любыми грамматически верными выражениями, не только с вышеприведёнными.

Электрическая схема

Почти каждому человеку приходилось пользоваться хоть раз в жизни географической картой. Во всяком случае, ещё со школы с тем, что такое глобус и географические карты, знаком каждый. Географический глобус или карта не являются Землёй или частью её поверхности.

Точно в таком же соотношении находятся электрическая схема и электрическая цепь. Схема метрополитена указывает где какие пути и станции, где узловые развязки, где с одной линии (кольца) можно перейти на другую.

Схема всегда является символическим изображением чего-либо, но она никак не может заменить собой оригинал.

Достаточно кратко можно определить так:

Электрическая схема — это символическая запись электрической цепи

Точно также, как был сделан логический разбор определения цепи, можно сделать разбор определения схемы. Самое важное всего в двух словах. Это символ и запись. Способы и виды соединений в электрической цепи, а также элементы цепи, все они имеют свою символическую запись.

Из многих символов, точно также как и из алфавита языка, собираются слоги, слова, фразы, простые и сложные предложения, и даже целые сочинения. Электрическая схема больше похожа на иероглифическую запись, потому как состоит из графических символов.

Для того, чтобы уметь читать электрические схемы, нужно начинать с алфавита базовых символов, а затем надо научится правильно сочетать эти элементы, чтобы затем уметь составлять по ним реальные электрические цепи.

Электрические схемы бывают разными, в зависимости от своего функционального назначения. Есть схемы, где в первую очередь показаны функциональные узлы и их назначение. Это похоже на оглавление в книге, сразу виден план повествования, а в схеме ясно представляется, что именно каждая часть схемы делает.

Есть схемы монтажные, где символически показано какие элементы цепи и где они расположены, как смонтированы на плате, в щите, в панели и т. д. Из монтажной схемы трудно сделать выводы о работе электрооборудования, но легко выполнять монтаж и демонтаж, замену и профилактику.

Есть ещё принципиальные схемы, где символы элементов расположены так, что читая схему можно понять и описать всю работу электрической цепи.

Для расчётов и анализа электрических цепей, используют в первую очередь принципиальные схемы, а при разработке и модернизации цепи нужны в том числе и функциональные схемы и монтажные (установочные). Когда приходится иметь дело со сложным электрооборудованием, например, конвейерная линия или автоматический комплекс, то все схемы собираются в альбомы, которые могут иметь более 100 листов различных форматов.

Освоив алфавит электрических схем, или как иначе говорят — язык схемотехники, вы сможете научится не только читать схемы, но и самостоятельно проектировать новые электрические цепи.

Самая простая электрическая цепь и её схема

Пользуясь определением электрической цепи и схемы, можно изобразить схему простейшей электрической цепи. Такая комбинация элементов была представлена ещё в самом начале статьи. Это цепь состоящая минимум из одного источника тока (ЭДС) и одного нагрузочного элемента, которым для наглядности может служить электрическая лампа накаливания.

Дата: 20.06.2015

Valentin Grigoryev (Валентин Григорьев)

Возможно Вам будут интересны следующие статьи из этого раздела:

Если Вы не нашли ничего интересного в этом разделе, тогда Вам следует воспользоваться левым вертикальным меню, чтобы попасть в интересующий Вас раздел сайта.

Источник: http://electricity-automation.com/page/elektricheskaya-tsepi-yeye-shema-chto-takoye-elektricheskaya-shema

Электрические цепи для чайников: определения, элементы, обозначения

Эта статья для тех, кто только начинает изучать теорию электрических цепей. Как всегда не будем лезть в дебри формул, но попытаемся объяснить основные понятия и суть вещей, важные для понимания. Итак, добро пожаловать в мир электрических цепей!

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм.

Электрические цепи

Электрическая цепь – это совокупность устройств, по которым течет электрический ток.

Рассмотрим самую простую электрическую цепь.  Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:

Электрическая цепь – это соединенные между собой источник тока, линии передачи и приемник.

Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.

Электрическая цепь

Кстати, о том, что такое трансформатор, читайте в отдельном материале нашего блога.

ЭТО ИНТЕРЕСНО:  Что такое нейтрализатор статического электричества

По какому фундаментальному признаку можно разделить все цепи электрического тока? По тому же, что и ток! Есть цепи постоянного тока, а есть – переменного. В цепи постоянного тока он не меняет своего направления, полярность источника постоянна. Переменный же ток периодически изменяется во времени как по направлению, так и по величине.

Сейчас переменный ток используется повсеместно. О том, что для этого сделал Никола Тесла, читайте в нашей статье.

Элементы электрических цепей

Все элементы электрических цепей можно разделить на активные и пассивные. Активные элементы цепи – это те элементы, которые индуцируют ЭДС. К ним относятся источники тока, аккумуляторы, электродвигатели. Пассивные элементы – соединительные провода и электроприемники.

Приемники и источники тока, с точки зрения топологии цепей, являются двухполюсными элементами (двухполюсниками). Для их работы необходимо два полюса, через которые они передают или принимают электрическую энергию. Устройства, по которым ток идет от источника к приемнику, являются четырехполюсниками. Чтобы передать энергию от одного двухполюсника к другому им необходимо минимум 4 контакта, соответственно для приема и передачи.

Резисторы – элементы электрической цепи, которые обладают сопротивлением. Вообще, все элементы реальных цепей, вплоть до самого маленького соединительного провода, имеют сопротивление. Однако в большинстве случаев этим можно пренебречь и при расчете считать элементы электрической цепи идеальными.

Существуют условные обозначения для изображения элементов цепи на схемах.

 

Кстати, подробнее про силу тока, напряжение, сопротивление и закон Ома для элементов электрической цепи читайте в отдельной статье.

Вольт-амперная характеристика – фундаментальная характеристика элементов цепи. Это зависимость напряжения на зажимах элемента от тока, который проходит через него. Если вольт-амперная характеристика представляет собой прямую линию, то говорят, что элемент линейный. Цепь, состоящая из линейных элементов – линейная электрическая цепь. Нелинейная электрическая цепь – такая цепь, сопротивление участков которой зависит от значений и направления токов.

Какие есть способы соединения элементов электрической цепи? Какой бы сложной ни была схема, элементы в ней соединены либо последовательно, либо параллельно.

 

При решении задач и анализе схем используют следующие понятия:

  • Ветвь – такой участок цепи, вдоль которого течет один и тот же ток;
  • Узел – соединение ветвей цепи;
  • Контур – последовательность ветвей, которая образует замкнутый путь. При этом один из узлов является как началом, так и концом пути, а другие узлы встречаются в контуре только один раз.

Чтобы понять, что есть что, взглянем на рисунок:

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

 

Классификация электрических цепей

По назначению электрические цепи бывают:

  • Силовые электрические цепи;
  • Электрические цепи управления;
  • Электрические цепи измерения;

Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.

Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.

Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.

Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.

Расчет электрических цепей

Рассчитать цепь – значит найти все токи в ней. Существуют разные методы расчета электрических цепей: законы Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Рассмотрим применение метода контурных токов на примере конкретной цепи.

 

Сначала выделим контуры и обозначим ток в них. Направление тока можно выбирать произвольно. В нашем случае – по часовой стрелке. Затем для каждого контура составим уравнения по 2 закону Кирхгофа. Уравнения составляются так: Ток контура умножается на сопротивление контура, к полученному выражению добавляются произведения тока других контуров и общих сопротивлений этих контуров. Для нашей схемы:

Полученная система решается с подставкой исходных данных задачи. Токи в ветвях исходной цепи находим как алгебраическую сумму контурных токов

Какую бы цепь Вам ни понадобилось рассчитать, наши специалисты всегда помогут справится с заданиями. Мы найдем все токи по правилу Кирхгофа и решим любой пример на переходные процессы в электрических цепях. Получайте удовольствие от учебы вместе с нами!

Источник: https://Zaochnik-com.ru/blog/elektricheskie-cepi-dlya-chajnikov-opredeleniya-elementy-oboznacheniya/

Электрическая цепь

Основа основ в электромонтажных работах, электротехнике, электромеханике присутствует такое понятие — электрическая цепь. Приветствую вас, дорогой читатель. Разговор пойдет о цепи, да еще и электрической. Цепь в моем понимании это что-то взаимосвязанное, скованное, единое.

Электрическая — значит, связь происходит с помощью электрической энергии. Делаем вывод: электрическая цепь представляет собой комплекс механизмов и устройств, образующих путь для электрического тока, подчиненного понятиям об электродвижущей силе, токе и напряжении.

Из чего состоит электрическая цепь?

Давайте вместе разберемся в составе электрической цепи. Как я уже говорил, цепь это что-то взаимосвязанное, причем электричеством. Что можно связать током? Конечно, это источник питания (генератор, аккумулятор), проводник (провода, кабеля, устройства, обеспечивающие уровень и качество напряжения) приемник питания (двигатель).

Короче, электрическую цепь, я бы разделил на три группы: первая группа — элементы, предназначенные для выработки электроэнергии; вторая группа — элементы, предназначенные для передачи электричества от источника питания до электроприемника; третья группа — элементы, преобразующие электроэнергию в другие виды энергии (тепловую, световую, механическую).

Участок электрической цепи, вдоль которого протекает один и тот же ток, называется ветвью. Место соединения ветвей электроцепи называется узлом. На электросхемах узел обозначается точкой. Любой замкнутый путь, проходящий по нескольким ветвям, называется контуром электрической цепи. Простейшая электрическая цепь имеет одноконтурную схему, сложные — несколько контуров.

Режимы работы

Элементами электроцепи являются различные электротехнические устройства, которые могут работать в различных режимах. Режимы работы, как отдельных элементов, так и всей электрической цепи характеризуются значениями тока и напряжения. Поскольку ток и напряжение в общем случае могут принимать любые значения, то режимов может быть бесчисленное множество.

Напоследок: самыми распространенными и простыми типами соединений в электрической цепи являются последовательное и параллельное соединение.

Ну вот, в принципе, всё, что сегодня я хотел вам поведать об одном из терминов электротехники — электрическая цепь. Буду рад вас видеть вновь на моем сайте podvi.ru. Много полезного, связанного с электромонтажными работами и электротехникой вы можете найти на карте сайта. Пишите комментарии, всего доброго.

Источник: https://podvi.ru/elektrotexnika/elektricheskaya-cep.html

Элементы электрической цепи

Каждая электрическая цепь включает в себя различные устройства и объекты, создающие пути для прохождения электрического тока. Для описания электромагнитных процессов, происходящих в каждом из них, применяются такие понятия, как электродвижущая сила, ток и напряжение.

Условно все элементы электрической цепи разделяются на три составные части:

  • Первая представлена источниками питания, вырабатывающими электроэнергию.
  • Вторая – элементами, преобразующими электричество в другие виды энергии. Они больше известны, как приемники.
  • Третья часть состоит из передающих устройств – проводов и других установок, обеспечивающих уровень и качество напряжения.

Схемы электрических цепей

Элементы электрических цепей могут соединяться в схемах различными способами. Для каждого из них существуют определенные закономерности, установленные и сформулированные учеными Омом и Кирхгофом. Соединение потребителей в электрических цепях может быть последовательным, параллельным и комбинированным.

Последовательное соединение. В этом случае с увеличением количества потребителей, происходит рост общего сопротивления цепи. Отсюда следует, что значение общего сопротивления будет состоять из суммы сопротивлений каждой подключенной нагрузки.

Поскольку на всех участках цепи проходит одинаковый ток, в связи с этим на каждый элемент распределяется только часть общего напряжения. Если какой-либо прибор или устройство перестает работать, наступает разрыв цепи. То есть, при выходе из строя хотя бы одной лампочки, остальные тоже не будут работать, как это случается, например, в елочных гирляндах.

Однако в последовательную цепь можно включить большое количество элементов, каждый из которых рассчитан на значительно меньшее сетевое напряжение.

Параллельное соединение. В этом случае к двум точкам электрической цепи подключается сразу несколько потребителей. Напряжение на каждом участке будет равно напряжению, приложенному к каждой узловой точке.

На представленной схеме хорошо просматривается возможность протекания тока различными путями. Ток, притекающий к месту разветвления, далее проходит к двум нагрузкам, имеющим определенное сопротивление. В результате, он оказывается равным сумме токов, расходящихся от данной точки.

Происходит снижение общего сопротивления цепи с увеличением ее общей проводимости, состоящей из проводимостей обеих ветвей. Соединение обеспечивает независимую работу потребителей.

То есть, при выходе из строя одного из них, остальные будут нормально работать, поскольку цепь остается не разорванной.

Энергия заряженного конденсатора. Формула

Комбинированное соединение. На практике большинство приборов могут включаться в цепь сразу обоими способами – последовательно и параллельно.

Поэтому такие соединения получили название комбинированных. Например, выключатели и вся автоматическая защитная аппаратура соединяется последовательно, обеспечивая тем самым разрыв цепи.

Розетки или лампочки, наоборот, всегда включаются параллельно, чтобы исключить их взаимодействие между собой.

Применение такого подключения вызвано еще и различным энергопотреблением бытовых электроприборов. При постоянном напряжении их сопротивления также будут различаться между собой. Таким образом, за счет комбинированного подключения удается равномерно распределить нагрузку на линиях и не допустить перегрузок на отдельных участках цепи.

Активные и пассивные элементы электрической цепи

Элементы, входящие в состав электрических цепей, могут быть активными и пассивными. Основным признаком активных составляющих, считается их способность отдавать электроэнергию.

Типичными представителями являются генераторы и другие источники электроэнергии, усилители электрических сигналов и другие. Пассивными элементами считаются различные виды потребителей и накопителей электрической энергии.

К ним относятся конденсаторы, резисторы, катушки индуктивности и другие двухполюсные устройства. Существует многополюсная аппаратура, функционирующая на базе двухполюсных элементов.

Источник: https://electric-220.ru/news/ehlementy_ehlektricheskoj_cepi/2017-08-17-1339

Электрические цепи — что это?

Элементы, которые соединяются проводниками электрического тока между собой, формируют электрические цепи. Существуют различные виды элементов цепи электрического тока: линейные и нелинейные, внутренние и внешние, активные и пассивные и другие.

Электрическая цепь: сущность и виды

Определение 1

Электрическая или гальваническая цепь – это совокупность элементов, устройств, предназначенных для протекания электрического тока, все процессы в которых описываются при помощи понятий «напряжение» и «сила тока».

Для того чтобы электрическая цепь работала правильно, необходимо наличие потребителей, соединительных проводников, источника питания, выключателя. Контур цепи должен замыкаться. Это обязательное условие для слаженной работы электрической цепи. Не все контуры можно считать цепями электрического тока.

Например, контуры заземления или зануления нельзя считать электрическими цепями, поскольку в обычном режиме работы в них не протекает ток. Однако цепями электрического тока их можно считать по принципу действия, поскольку в аварийных ситуациях в них протекает ток. Контур заземления замыкается при помощи грунта.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Существует несколько видов электрической цепи:

  1. Нелинейные и линейные электрические цепи.
  2. Разветвленные и неразветвленные цепи.
  3. Внутренние и внешние.
  4. Активные и пассивные.

Определение 2

Линейная электрическая цепь – это цепь, все элементы в которой линейные.

К линейным элементам можно отнести независимые и зависимые идеализированные источники тока и напряжения, резисторы, что подчиняются закону Ома, а также другие линейные компоненты, что подчиняются линейным дифференциальным уравнениям (катушки и электрические конденсаторы).

ЭТО ИНТЕРЕСНО:  Почему счетчик электроэнергии много мотает

Замечание 1

Если электрическая цепь содержит компоненты, которые отличаются от вышеперечисленных, то она называется нелинейной.

Электрическая схема – это изображение электрической цепи при помощи условных обозначений.

Определение 3

Функция зависимости тока, который протекает по двухполюсному компоненту, от напряжения называется вольтамперной характеристикой.

Часто данную характеристику изображают в декартовых координатах графически. При этом на графике напряжение откладывают по оси абсцисс, а электрический ток – по оси ординат. Омические резисторы, вольтамперная характеристика которых описывается линейной функцией, называются линейными.

Примерами линейных электрических цепей являются цепи, которые содержат только конденсаторы, резисторы, а также катушки индуктивности, что не имеют ферромагнитных сердечников

Нелинейные электрические цепи приближенно можно описать по принципу линейных. Однако это возможно только в том случае, если изменений приращений токов на компоненте мало. При этом вольтамперная характеристика данного компонента заменяется линейной. Данный подход в физике носит название «линеаризация». При этом к электрической цепи присоединяется мощный аппарат анализа линейных цепей.

Примерами нелинейных электрических цепей могут быть любые электронные устройства, которые работают в линейном режиме и содержат нелинейные пассивные и активные компоненты (генераторы, усилители).

Также электрические цепи подразделяются на разветвленные и неразветвленные. Во всех элементах неразветвленной цепи протекает электрический ток. В разветвленной цепи имеется два узла и три ветви. В каждой ветви протекает свой электрический ток.

Ветвь определяется как участок цепи, который образован соединительными элементами последовательно. В свою очередь, узел имеет точку цепи, в которой расположено не менее трех ветвей.

Узел, в котором располагается две ветви, одна из которой является продолжением второй, называется вырожденным или устранимым узлом.

Внешние и внутренние электрические цепи

Для формирования упорядоченного движения электронов, необходимо наличие разности потенциалов в любом участке электрической цепи. Это условие можно обеспечить, если подключить напряжение в качестве источника питания. В таком случае он называется внутренней электрической цепью.

Остальные элементы образуют внешнюю электрическую цепь. Для того чтобы задать движение зарядов, против направления в источнике питания необходимо приложить сторонние силы.

Подобными силами могут быть:

  • гальванический источник (батарея);
  • обмотка генератора;
  • выход вторичной обмотки генератора.

Напряжение в электрической цепи может быть постоянным и переменным. Все зависит от свойств источника питания. Электрические цепи по этому признаку разделяются на контуры. Электроны, кроме упорядоченного движения, задействованы в хаотичном тепловом движении. Скорость хаотичного движения носителей заряда увеличивается с повышением температуры. Однако такой тип не принимает участие в формировании электрического тока.

Род тока также зависит от источника питания, иными словами, свойства внешней цепи. Батарея компонента постоянно выдает напряжение, а разные обмотки трансформаторов или генераторов создают переменное напряжение. Все это зависит от внутренних процессов источника питания.

Замечание 2

Внешние силы, которые формируют движение электронов, называются электродвижущими силами. Они характеризуются работой, которая выполняется источником для перемещения единицы заряда.

В любых расчетах электрических цепей используются два класса источников питания:

  • источники тока;
  • источники напряжения.

Такие идеальные источники тока в реальности не существуют, однако практически их пытаются имитировать. В бытовой сети имеется напряжение 220 Вольт с некоторыми нормированными отклонениями. Именно это – источник напряжения, поскольку норма дается именно на этот показатель.

Компоненты электрической цепи

Электрическая цепь состоит из множества компонентов:

  1. Выключатель. Данное устройство цепи позволяет соединить источник питания с потребителем. При использовании выключателя на контактах образуется искра. Она возникает при наличии емкостного сопротивления. Чтобы не образовалось искрения, в электрическую цепь добавлены дроссели. Выключатель снабжается контактами специального вида. Для предотвращения искры электрические цепи могут иметь другие решения.
  2. Проводники. Электрические провода изготавливают из меди и алюминия. Эти материалы имеют низкое удельное сопротивление, хотя их стоимость постоянно повышается. Во время работы на проводах выделяется тепло, которое зависит от электрического тока и сопротивления участка цепи.
  3. Потребители. Остальные компоненты электрической цепи принято считать потребителями. Электродвигатель и лампа накаливания считаются полезной нагрузкой. Параметры электрической цепи сильно зависимы от потребителей. Обмотки трансформаторов, которые имеют электрические цепи, обладают большим индуктивным сопротивлением. Кроме тока направление может менять и мощность. При этом энергия может циркулировать как в одну, так и в другую сторону. В таком случае мощность называется реактивной, она не выполняет полезной работы. Однако она изменяет форму электрического сигнала. В промышленных целях целесообразно подключать конденсаторы к электродвигателям, которые будут компенсировать индуктивность с сопротивлением.

Замечание 3

Индуктивные потребители имеют важное свойство: они расходуют электрическую энергию, которая в дальнейшем трансформируется в магнитное поле, и передается далее.

Законы, которые действуют в электрических цепях

Закон Ома устанавливает зависимость электрического тока, который протекает в проводнике, от сопротивления этого же проводника и направления в определенном участке цепи.

Определение 4

Закон Ома – это эмпирический закон, который определяет связь силы тока, что протекает в проводнике, с электродвижущей силой источника и сопротивлением.

Закон установлен в 1826 году Георгом Омом и назван в его честь. Записан закон в следующем виде:

$X = \frac {a}{b + l}$, где:

  • $X$ — это показания гальванометра;
  • $a$ — величина, которая характеризует свойства источника напряжения (она не зависит от величины тока и постоянна в широких пределах);
  • $l$ — величина, которая определяется длиной соединительных проводов;
  • $b$ — параметр, который характеризует свойства электрической установки в целом.

При использовании современных терминов формула закона Ома для полной цепи выражена в следующем виде:

Источник: https://spravochnick.ru/fizika/elektricheskie_cepi_-_chto_eto/

Виды электрических цепей — Asutpp

Элементарные или отдельные электрические цепи по назначению можно раз­делить на следующие виды:

  • измерения;
  • контроля;
  • сигнализации;
  • защиты;
  • блокировки;
  • управления;
  • регулирования;
  • питания.

В нормативных документах имеется перечень цепей, но отсутствуют опреде­ления видов электрических цепей. Иногда смешиваются понятия цепей контроля и измерения, защиты и блокировки, сигнализации и контроля.

Ниже приводятся определения видов электроцепей, которые отражают функ­циональное назначение цепей в электрических схемах АСУТП.

Электрическая цепь измерения параметра — электрическая цепь передачи элек­трического сигнала, пропорционального величине измеряемого параметра техно­логического процесса.

Электрическая цепь контроля параметра — электрическая цепь передачи дис­кретного электрического сигнала о достижении измеряемым параметром опреде­ленного значения или об изменении положения элемента, который контролирует состояние аппарата или устройства.

Электрическая цепь сигнализации — электрическая цепь светового и/или звуко­вого сигнала, полученного из цепей контроля параметра, цепей защиты, управле­ния, регулирования.

Электрическая цепь защиты — электрическая цепь с установленным в ней уст­ройством (аппаратом) защиты, которое служит для безусловного автоматического отключения или включения данной электрической цепи при возникновении ава­рийной ситуации в технологическом или электрическом оборудовании.

Электрическая цепь блокировки — электрическая цепь с установленными в ней элементами, которые предотвращают или ограничивают выполнение операций в од­ной из цепей управления, регулирования, сигнализации в целях предупреждения возникновения в этой цепи недопустимых состояний при определенных состояни­ях или положениях элементов в другой электрической цепи.

Электрическая цепь управления — электрическая цепь, по которой передаются сигналы включения/отключения электрооборудования, электроприемника.

Электрооборудование — это совокупность электрических устройств, объединенных признаками (назначением, условиями применения, принадлежностью к электрическому/технологическому агрегату).

Электроприемник по пункту 1.2.8 ПУЭ — аппарат, агрегат, механизм, предназначен для преобразования электрической энергии в другой вид энергии.

Цепь контроля

Цепь контроля характеризуется тем, что в определенный момент изменения ве­личины параметра или положения механического предмета элемент контроля замы­кает электрическую цепь, в которой лавинообразно нарастает ток, достаточный л. срабатывания приемного элемента, или размыкает электрическую цепь, в которой ток снижается до величины, достаточной для отключения приемного элемента.

В качестве элемента контроля может быть применен «сухой контакт» средства автоматизации или командоаппарата, транзистор, управляемый диод, оптрон, ин­дуктивный или емкостный датчик и т. д.

Большинство цепей контроля являются двупроводными цепями. Исключен;:: составляют цепи PNP или NPN постоянного тока, имеющие в цепи три провода.

В связи с изложенным, принципиальная электрическая цепь контроля графи­чески проста и отличается от других цепей контроля маркировкой (обозначена входных и выходных элементов и проводов цепи.

Поэтому в проекте АСУТП выполнять принципиальную электрическую схс контроля нецелесообразно, все необходимые для проектирования данные указываются на схемах соединения и подключения.

Во многих случаях системы автоматизации содержат релейные схемы сигнализации, защиты и управления, в которые составными элементарными цепями вход цепи контроля. В этом случае цепи контроля изображаются в составе соответствующей принципиальной электрической схемы.

Цепь управления

В технологическом процессе участвуют разнообразные машины, механизмы, а также устройства, приводимые в действие электроприводами.

Электропривод — устройство, состоящее из электродвигателя, аппаратуры уп-жадения им и механических передач, связывающих электродвигатель с рабочими станами технологического механизма или машины.

Технологические механизмы и устройства приводятся в движение преимущественно асинхронными двигателями с короткозамкнутым ротором. При управлении электродвигателем различают режимы, обусловленные ведением технологического процесса:

  • длительный режим с постоянной нагрузкой;
  • длительный режим с переменной нагрузкой;
  • кратковременный режим;
  • повторно-кратковременные режимы.

Длительный постоянный режим работы характеризуется длительным включением электродвигателя с постоянной по величине нагрузкой. Такой режим работы характерен для приводов вентиляторов, насосов, компрессоров, транспортеров

Длительный переменный режим работы характеризуется длительным включением электродвигателя с переменной по величине нагрузкой. Такой режим характе­рен для металлорежущих станков, обрабатывающих однотипные детали и имеющих фрикционную муфту в цепи главного движения.

Кратковременный режим работы двигателя характерен для электроприводов разводных мостов, редко работающих точил, толкателей, вспомогательных приводов металлорежущих станков, задвижек, клапанов, шиберов.

Повторно-кратковременный режим работы характеризуется тем, что рабочие периоды чередуются с паузами. Время цикла в повторно-кратковременном режиме составляет не более 10 мин.

Типичным примером подобных приводов являются краны, лифты, транспорт­ные устройства, некоторые металлорежущие станки, прессы, исполнительные ме­ханизмы регулирующих устройств.

Для АСУТП характерны контроль и управление электродвигателями с режи­мами: длительным с постоянной нагрузкой, кратковременным и повторно-кратко­временным.

Аппаратура управления должна учитывать частоту включения/отключения по механической и электрической износоустойчивости, пусковые токи и токи отклю­чения, а также необходимость обеспечения нулевой защиты электродвигателя.

Электрическая схема управления электропривода должна обеспечивать режимы управления электроприводом, которые различаются в зависимости от:

  • расстояния от органов управления до объекта управления;
  • степени участия оперативного персонала в процессе управления. Блок-схема режимов управления электроприводом приведена на схеме 13.Сх8. В зависимости от расстояния до объекта управления различают режимы:
  • местное управление;
  • дистанционное управление;
  • режим «отключено».

В свою очередь, эти режимы подразделяются на режимы в зависимости от сте­пени участия человека в процессе управления:

  • ручное местное;
  • ручное сблокированное местное;
  • автоматическое (местное);
  • ручное дистанционное;
  • ручное сблокированное дистанционное;
  • автоматическое централизованное.

В технической литературе, в том числе нормативно-технической, «Ручное мест­ное» имеет синоним «Ручное управление» или «Местное управление», «Ручное сбло­кированное управление» — «Полуавтоматическое управление», «Дистанционное управление» — «Централизованное управление» или «Диспетчерское управление». «Автоматическое местное» и «Автоматическое централизованное» имеют синоним «Автоматическое управление» с дальнейшим пояснением расположения аппарату­ры автоматического управления.

Под местным режимом управления понимается управление электроприводом с помощью органов управления (кнопок, ключей, командоаппаратов и т. п.), рас­положенных вблизи от механизмов, в прямой видимости механизма; при этом опе­ративный работник имеет возможность непосредственно контролировать работу ме­ханизма визуально, по слуху, по приборам, по вибрации и т. п.

Местное управление может быть предусмотрено для проведения опробования, наладки, ввода в эксплуатацию после монтажа или ремонта механизмов с электро­приводом.

Источник: https://www.asutpp.ru/vidy-elektricheskix-cepej.html

Понравилась статья? Поделиться с друзьями:
ЭлектроМастер
Как сделать абажур для люстры своими руками

Закрыть