Что такое электрическая сеть

Понятие электрическая сеть

что такое электрическая сеть

Понятие электрическая сеть подразумевает объединение преобразующих подстанций, распределительных устройств, переключательных пунктов и соединяющих их линий электропередачи. Всё это предназначено для передачи электроэнергии (Электрической Энергии) от электростанции к местам её потребления и распределения между потребителями.

Понятие электрическая сеть эквивалентна высоковольтной сети электропередач. В узком смысле, отдельная электропередача, представляет собой электрическую сеть. Развитая электрическая сеть, по количеству электроустановок и по их функционалу, образует систему передачи и распределения электроэнергии.

В современных условиях ни отдельные линии электропередачи, ни комплексные системы передачи и распределения электроэнергии не работают изолированно. Они связывают большинство электростанций в единую электроэнергетическую систему для совместной работы на общую электрическую нагрузку, а также для параллельной работы для централизованного электроснабжения электрической энергией всех потребителей.

Электрическая система

Электрическая система (Электро Энергетическая Система -ЭЭС) – объединение электрической части электростанций, сетей электропередачи и потребителей электрической энергии, устройств управления, регулирования и защиты процессов производства, передачи и потребления электроэнергии. Все элементы электрической системы объединены общим режимом и непрерывностью процессов  производства, передачи и потребления электрической энергии.

Энергосистема

Энергосистема (энергетическая система) — это объединение источников энергии, а именно:

  • электрических станций,
  • электрических сетей (ЭС),
  • тепловых сетей (ТС),
  • паровых котлов (ПК).
  • гидротехнических сооружений (ГТС),
  • турбин (Т),
  • генераторов (Г),
  • других устройств производства, передачи, распределения и потребления электрической и тепловой энергии.

К потребителям относят, электрические потребители (ЭН — электрическая нагрузка) и потребители тепла (ПТ).

Система электроснабжения

Система электроснабжения (СЭ) это расширенное понятие электрической сети (ЭС). СЭ объединяет все электрические установки, нужные для обеспечения потребителя электроэнергией.

Смотрим рисунок 1. Это система электроснабжения с учетом ЭП совпадает с электрической частью энергетической системы.

Требования к электрическим сетям

Электрическая сеть (система передачи и распределения электрической энергии), как часть электроэнергетической системы, удовлетворяет следующим требованиям:

  • обеспечивать надёжное, иногда бесперебойное электроснабжение,
  • обеспечивать устойчивую работу,
  • доставлять потребителям электроэнергию нормированного качества,
  • соответствовать условиям экономии, эксплуатации, расширения, безопасности и удобства эксплуатации с учетом возможности создания релейной защиты, режимной автоматики и автоматики против аварий.

Elesant.ru

Другие статьи раздела: Электрические сети

Источник: https://elesant.ru/elektricheskie-seti/ponyatie-elektricheskaya-set

Что такое электрическая сеть — Советы электрика

что такое электрическая сеть

Принципы построения электрических сетей: Термины и определения, назначение. Электрооборудование городских электрических сетей.

Сети: основные определения, требования к системе электроснабжения

Основным документом, определяющим структуру и состав электроустановок, являются Правила устройства электроустановок (ПУЭ). ПУЭ обобщают и узаконивают передовой опыт эксплуатации, учитывают перспективы развития и состояние электроэнергетики. В работе над ПУЭ принимают участие ведущие эксплуатационные, монтажные, наладочные, проектные и научно-исследовательские организации страны.

Распределительная, в том числе, городская электрическая сеть сооружается для электроснабжения потребителей. В соответствии с ПУЭ электроснабжение – обеспечение потребителей электрической энергией. Более широкое понятие энергоснабжение означает снабжение потребителей всеми видами энергии (электрической, тепловой, газом и др.).

Системой электроснабжения называют совокупность электроустановок, предназначенных для электроснабжения.
Электрической сетью называют совокупность электроустановок для передачи и распределения электрической энергии, состоящую из подстанций, распределительных устройств, токопроводов, воздушных и кабельных линий электропередачи, работающих на определенной территории.

Следует различать электроприемники и потребители электрической энергии (в дальнейшем кратко именуются приемниками и потребителями).

Приемник – аппарат, агрегат, механизм, предназначенный для преобразования электрической энергии в другой вид энергии.

Потребитель – приемник или группа приемников, объединенных технологическим процессом и размещающихся на определенной территории.
К системе электроснабжения города предъявляют следующие основные требования:

  1. Обеспечение потребителей необходимым количеством электрической энергии.
  2. Обеспечение требуемого качества электроснабжения потребителей. Под качеством электроснабжения обычно понимают требуемые уровни надежности электроснабжения, частоты и напряжений на зажимах приемников.
  3. Экономическая целесообразность сооружения и эксплуатации, т.е. сочетание относительно невысоких стоимостей оборудования, затрат на строительство и эксплуатацию, включая потери электроэнергии.
  4. Обеспечение возможности развития сети без ее коренного переустройства.
  5. Удобство и безопасность обслуживания.

Сеть, наилучшим образом удовлетворяющая всем указанным требованиям, являетсяоптимальной, т.е. наилучшей с учетом налагаемых реальной жизнью ограничений. Следует отметить, что с математической точки зрения эти требования являются критериями оптимизации, т.е. условиями, по которым судят о том, какой из вариантов сети является наилучшим.

Поскольку таких критериев несколько, то говорят о многоцелевой (в данном случае с четырьмя целями) оптимизации. Первым по важности из них является первое требование, так как потребитель должен получить необходимое ему количество электрической энергии.

Выполнение второго требования регламентировано Правилами устройства электроустановок, в которых по условиям надежности электроснабжения все приемники делятся на 3 категории.

К приемникам первой категории относят те, перерыв электроснабжения (перерыв питания) которых может повлечь за собой опасность для жизни людей, угрозу для безопасности государства, значительный материальный ущерб, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства, объектов связи и телевидения. Из состава этих приемников выделяют особую группу приемников, бесперебойная работа которых необходима для обеспечения безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов и пожаров.

К приемникам второй категории относятся те, перерыв питания которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей.
Приемники третьей категории – все остальные приемники, не подходящие под определения первой и второй категорий.

Независимым источником питания (НИП) называется источник, напряжение на котором сохраняется в допустимых пределах при исчезновении его на другом или других источниках питания.Приемники I категории должны получать питание от двух НИП. Обычно каждый приемник получает питание от одного НИП, являющегося для него рабочим источником питания. Второй НИП является резервным и приемники подключаются к нему при исчезновении рабочего питания.

Перерыв питания этих приемников допускается лишь на время автоматического восстановления питания, т.е. автоматического включения резервного НИП. В ряде случаев кроме резервирования электроснабжения используют технологическое резервирование, например, путем установки резервных технологических агрегатов.

У электроприемников со сложным непрерывным технологическим процессом при этом могут быть предусмотрены дополнительные меры, определяемые особенностями технологического процесса, например, переход на электропитание от резервного источника без перерыва питания (даже кратковременного, который получается при действии АВР).

 Для питания приемников особой группы должно предусматриваться дополнительное питание от третьего НИП, мощность которого должна быть достаточна для безаварийного останова производства.Приемники II категории рекомендуется обеспечивать питанием от двух НИП, один из которых также является рабочим, а другой резервным. Перерыв питания этих приемников допускается на время, необходимое для включения резервного НИП вручную (оперативным персоналом или оперативно-выездной бригадой).

Приемники III категории допускается подключать только к одному НИП, если замена или ремонт поврежденного элемента системы электроснабжения не превышает одних суток.

Построение городской электрической сети, помимо выполнения требования надежности, должно обеспечивать требуемые показатели качества напряжения (отклонения напряжения, симметричность, синусоидальность и др., описанные в главе 4).

Система электроснабжения города представляет собой совокупность электрических сетей различных напряжений, обычно (исключая мегаполисы) напряжением 220-35, 6-10 и до 1 кВ. Совокупность сетей напряжением 220-35 кВ называется электроснабжающими сетями. Они, как правило, относятся к сетевым компаниям. В состав электроснабжающих сетей входят подстанции и линии напряжением 220-35 кВ.

Сборные шины подстанций этих сетей напряжением 6-10 кВ называют центрами питания (ЦП) городских сетей. Сети напряжением 6-10 кВ (в частности 35 кВ) предназначены для распределения электроэнергии между группами потребителей или питания отдельных потребителей. Такие сети принято называть городскими распределительными сетями (ГРС).

Эти сети в основном предназначены для питания находящихся на территории города коммунально-бытовых потребителей, или объектов жилищно-коммунального хозяйства (ЖКХ).В общем случае ГРС включают в себя питающую сеть 6-10 кВ и непосредственно распределительную сеть того же напряжения. Питающая сеть 6-10 кВ часто состоит из питающих линий, распределительных пунктов и прямых связей между последними.

У малых и некоторых средних городов питающая сеть может совпадать с электроснабжающей.Питающая линия – линия напряжением 6-10 кВ, соединяющая распределительный пункт с ЦП и не имеющая распределения энергии по своей длине.

Распределительный пункт (РП) – подстанция 6-10 кВ, предназначенная для приема электроэнергии от ЦП и распределения ее без преобразования частоты (выпрямления) и напряжения (трансформации).

Прямая связь между РП – линия 6-10 кВ, связывающая 2 РП между собой.Распределительная сеть 6-10 кВ состоит из распределительных линий 6-10 кВ и трансформаторных подстанций.

Распределительная линия – линия 6-10 кВ, подающая питание на трансформаторные подстанции или (и) на вводы электроустановок потребителей от РП или ЦП.

Трансформаторная подстанция (ТП) – электроустановка, осуществляющая понижение напряжения в распределительной электрической сети с 6-10 кВ на уровень до 1 кВ, чаще всего 0,4 кВ. В типовых ТП городской сети устанавливаются трансформаторы с номинальной мощностью SНОМ = (250630) кВ?А, а на промышленных предприятиях – 6301000 кВА.

В состав ГРС входят (полностью или частично) разветвленные сети напряжением до 1 кВ, предназначенные для питания потребителей коммунально-бытового назначения (жилые дома, магазины и другие мелкие потребители города). Часть сетей напряжением 0,4 кВ относится к объектам ЖКХ.

В Приложении 2 в качестве примера приведены условная принципиальная схема электроснабжения города.

Электрооборудование городских электрических сетей

Распределительные пункты и трансформаторные подстанции оснащают основным и вспомогательным электрооборудованием.Основным называют оборудование, непосредственно участвующее в передаче и распределении электрической энергии. Вспомогательное предназначено для обеспечения указанных выше процессов.

К обеспечивающим системам относятся системы управления (включая средства диспетчерского телеуправления), релейной защиты и электроавтоматики, измерения параметров электрических величин, учета электроэнергии, собственных нужд (освещение, отопление, вентиляция, подогрев приводов и др.).

В составе любого РП и ТП имеются одно или несколько распределительных устройств РУ.

Распределительным устройством называется сооружение, предназначенное для сбора электрической энергии от ее источников и распределения ее между потребителями на одном напряжении. На ТП обычно имеются 2 РУ – напряжением выше 1 кВ и напряжением до 1 кВ.

В общем случае в состав РУ входят:

  • сборные шины (необходимы для подключения к ним всех элементов – источников и приемников);
  • ошиновка – токоведущие части отдельных элементов (трансформаторов, линий);
  • коммутационные аппараты, необходимые для включения или отключения электрических цепей;
  • измерительные трансформаторы тока и напряжения;
  • средства защиты от импульсных перенапряжений;
  • оборудование высокочастотной обработки линий электропередачи.

Напомним, что на однолинейной схеме показывают оборудование только одной, средней фазы. Если оборудование установлено не во всех фазах, то это отражают на схемах.

В частности, измерительные трансформаторы тока в цепях линий установлены только в крайних фазах, так как по конструктивным особенностям в ячейках комплектных распределительных устройств (КРУ) помещаются только два трансформатора тока, а не три.

Коммутационные аппараты напряжением выше 1 кВ подразделяют на выключатели Q, выключатели нагрузки QW, разъединители QS, отделители QR, короткоразмыкатели QN и заземлители QSG.

Источник: https://ns-sts.ru/bez-rubriki/chto-takoe-elektricheskaya-set.html

Электрические сети

что такое электрическая сеть

Принципы построения электрических сетей: Термины и определения, назначение. Электрооборудование городских электрических сетей.

Класс напряжения — Wiki Power System

Класс напряжения — это типовое значение линейного (междуфазного) напряжения в электрических сетях, которое является номинальным для различных групп оборудования: трансформаторов, линий, генераторов, реакторов и прочих. Класс напряжения определяет требуемый уровень электрической изоляции электрооборудования. Порядок класса напряжения определяет то, для каких целей и задач применяется это оборудование.

В частности, низкие напряжения используются для распределения мощности между мелкими потребителями на малые расстояния, средние классы — для распределения мощности между средними потребителями и группами потребителей на умеренной дистанции, высокие и сверхвысокие классы — для распределения мощности между крупными потребителями и для передачи мощности на большие расстояния.

Иными словами низкие и средние классы напряжения характерны для распределительных сетей, в то время как высокие и сверхвысокие классы — для системообразующих сетей, связывающих отдельные энергосистемы.

Необходимость применения различных классов напряжения

Энергосистема на разных классах напряжения

На заре электроэнергетики, когда идея объединенных энергосистем ещё не возникла, электрические сети использовались изолированно на отдельных предприятиях, аналогично тому, как до этого применялись механические передаточные системы.

ЭТО ИНТЕРЕСНО:  Почему не дает зарядку генератор ваз 2107

Каждое из предприятий стремилось построить свою собственную станцию и управлять её самостоятельно. Идею электростанции, как независимого объекта, имеющего своей целью исключительно выработку и продажу электроэнергии как товара, одним из первых предложил Сэмюэль Инсулл[1].

И если прежде низких классов напряжения, которые могли быть различны, было достаточно для нужд промышленности, поскольку задачи совместной работы предприятий не стояло, то теперь в новых реалиях возникло два ключевых вопроса: как передать мощность от электростанций сразу нескольким потребителям — проблема удаленности источников электроэнергии от районов потребления, и как обеспечить совместимость по напряжению всех используемых установок?

Если второй вопрос разрешился с точки зрения электроэнергетики сравнительно просто: был введен стандарт на классы напряжения, что обеспечило их совместимость, то первый из них оказывается напротив крайне сложным, поскольку передача на большое расстояние создает сразу несколько инженерных проблем. Ниже приводятся основные их них:

Чем выше напряжение, тем меньше потери мощности. Данную закономерность хорошо описывает формула потерь в элементе сети по параметрам конца передачи:

[math]\displaystyle\Delta\dot{S} = \frac{P2+Q2}{V2}(R+jX),[/math]

где [math]\Delta\dot{S}[/math] — потери мощности в передаче, МВА; [math]P[/math], [math]Q[/math] — мощности в конце передачи, МВт и МВар; [math]V[/math] — модуль напряжения в конце передачи, кВ; [math]R[/math], [math]X[/math] — активное и реактивное сопротивления передачи, Ом. Эта формула очевидно показывает, что при передаче одной мощности при увеличении напряжения потери мощности квадратично уменьшаются.

Чем выше напряжение, тем выше предел передаваемой мощности. Для любой передачи существует предел передаваемой активной мощности, определяемые статической устойчивостью, который в простейшем случае на основании уравнения угловой хараткеристки передачи определяется следующим выражением:

[math]\displaystyle P_{max} = \frac{U_1 \dot U_2}{X},[/math]

где [math]U_1, U_2[/math] — напряжения по концам передачи, кВ; [math]X[/math] — реактивное сопротивление передачи, Ом; [math]P_{max}[/math] — предел передаваемой мощности мередачи, МВт. Нетрудно видеть, что с ростом напряжения предел передаваемой мощности квадратично растет.

Наиболее рациональный класс напряжения с точки зрения минимума потерь и капиталловложений определяется на этапе долгосрочного планирования режимов работы электрической сети.

Классификация классов напряжения

По уровню напряжения все классы напряжения условно разделяют на следующие группы:

  • Ультравысокий класс напряжения — от 1000 кВ.
  • Сверхвысокий класс напряжения — от 330 кВ до 750 кВ.
  • Высокий класс напряжения — от 110 кВ до 220 кВ.
  • Средний класс напряжения — от 1 кВ до 35 кВ.
  • Низший класс напряжения — до 1 кВ.

Максимально допустимые рабочие напряжения превышают номинальные значения на 15 % [math](U_{\text{ном}}\le 220\text{ кВ})[/math] , на 10 % [math](220 \lt U_{\text{ном}} \lt 500\text{ кВ})[/math] и на 5 % [math](500 \le U_{\text{ном}}\text{ кВ})[/math].

Шкалы номинальных напряжений генераторов и вторичных обмоток трансформаторов выбраны выше на 5—10 % номинальных напряжений потребителей, линий электропередачи, первичных обмоток трансформаторов с целью облегчения поддержания номинального напряжения у потребителей.

Классы напряжения Класс напряжения, кВ Максимально допустимое рабочее напряжение, кВ Электрические сети, кВ Генератор, кВ Первичная обмотка трансформатора, кВ Вторичная обмотка трансформатора, кВ
0,22 0,38 0,66 3 6 10 13,8 15,75 18 20 35 110 150 220 330 500 750 1150
0,253 0,437 0,759 3,6 6,9 11,5 15,87 18,11 20,7 23 40,5 126 172 252 363 525 787 1207,5
0,22 0,38 0,66 3 6 10 20 35 110 150 220 330 500 750 1150
0,23 0,4 0,69 3,15 6,3 10,5 13,8 15,75 18 20
0,22 0,38 0,66 3; 3,15 6; 6,3 10; 10,5 13,8 15,75 18 20 35 110; 115 150; 158 230 330 500 750 1150
0,23 0,4 0,69 3,15; 3,3 6,3; 6,6 10,5; 11 22 36,75; 38,5 115; 121 158; 165 242 347 525 787

к вопросу о классах напряжения

При расчетах коротких замыканий следует обращать особое внимание на класс напряжения, поскольку в зависимости от класса может быть различным режим работы нейтрали в сети.

В частности, на низших и средних классах напряжения нейтраль в подавляющем большинстве случаев оказывается изолированной — это позволяет при адекватных затратах на повышенный уровень изоляции облегчить режим работы сети, а именно фактически исключить фактор однофазных замыканий, которые, являясь наиболее вероятными среди оных в сетях всех уровней, при изолированной нейтрали не представляют существенной угрозы и, что особенно важно, не приводят к нарушению электроснабжения потребителей[2]. Таким образом, для расчётчика класс напряжения должен в данной ситуации, как минимум, указать на необходимость уточнения состояния нейтрали и учет этого фактора в дальнейших расчётах.

Повышенное напряжение базисного узла

Во многих практических расчётах можно столкнуться с тем, что напряжение базисного узла задается повышенным и редко совпадает с номинальной величиной. В частности, для сетей 110 кВ величина составляет 115 (121) кВ, для сетей 220 кВ — 230 (242) кВ. Объяснений данному факту может быть несколько.

В первую очередь это может быть обусловлено тем, что в соответствии с указаниями по расчёту коротких замыканий при учете тока подпитки от внешней системы необходимо задавать напряжение этой системы выше номинала на 5 %. Эта мера направлена на намеренное завышение расчётного тока короткого замыкания, чтобы исключить неопределенность, связанную с составом оборудования и режимом внешней сети.

Второе объяснение менее убедительно по сравнению с первым, но имеет под собой вполне логичное основание. Как правило, базисный узел задается на шинах мощной электростанции района, либо на шинах подстанции высокого или сверхвысокого напряжения, связывающей район с внешней системой.

Опыт расчётов подсказывает, что в большинстве случаев мощность именно вытекает из базисного узла, а не наоборот. В начале передачи, опять же как правило, напряжение выше, чем на приемном конце, а на электростанции напряжения в нормальном режиме выше, чем у потребителей.

Таким образом, умышленное завышение напряжения базисного узла имеет своей целью отразить указанную физическую закономерность.

Цветовое обозначение классов напряжения

В отечественной практике расчётов и управления энергосистемами при графическом отображении электрических схем сетей и систем принято использовать унифицированное цветовое обозначение классов напряжений. При этом есть несколько стандартов и несколько вариантов цветовых схем классов напряжения, в частности внимания заслуживают прежде всего Стандарт СО ЕЭС и Стандарт ФСК ЕЭС. Таблицах ниже указаны общепринятые цветовые обозначения раздичных классов напряжения по этим стандартам[3][4].

Цветовая схема согласно стандарту СО ЕЭС
Класс напряжения Образец цвета Цвет в системе RGB
1150 кВ 205:138:255
750 кВ (800 кВ ППТ) 065:065:240
500 кВ 184:000:000
400 кВ (ЛЭП, цепи ППТ) 135:253:194
330 кВ 000:204:000
220 кВ 204:204:000
128:128:000
150 кВ 170:150:000
110 кВ 070:153:204
27 — 60 кВ 194:090:090
6 — 24 кВ 164:100:164
Генераторное напряжение 204:100:204
Без напряжения 204:204:204
150:150:150
Заземлено 255:153:000
Перегрузка 255:000:000
Неизвестно 140:140:140
Цветовая схема согласно стандарту ФСК ЕЭС
Класс напряжения Образец цвета Цвет в системе RGB
1150 кВ 205:138:255
750 кВ (800 кВ ППТ) 000:000:200
500 кВ 165:015:010
400 кВ 240:150:30
330 кВ 000:140:000
220 кВ 200:200:000
150 кВ 170:150:000
110 кВ 000:180:200
35 кВ; 20 кВ 130:100:050
10 кВ 100:000:100
6 кВ 200:150:100
до 1 кВ 190:190:190
Генераторное напряжение 230:070:230
Обесточено 255:255:255
Заземлено, ремонт 205:255:155

Разница палитр, как не трудно заметить, не драматична и не препятствует использованию ни одной из них, но предагаемый стандартом ФСК вариант, подразумевает работу в программном комплексе с черным фоном, из-за чего обесточенные участки предлагается показывать белым цветом. Таким образом, ориентация на цветовую схему стандарта СО ЕЭС является более удобной для рядовых расчётов. Категорически соблюдать требования к классам напряжения необходимо только при сотрудничестве непосредственно с соответствующими организациями.

Использованные источники

Источник: https://powersystem.info/index.php?title=%D0%9A%D0%BB%D0%B0%D1%81%D1%81_%D0%BD%D0%B0%D0%BF%D1%80%D1%8F%D0%B6%D0%B5%D0%BD%D0%B8%D1%8F

Классификация электрических сетей

Электрическая сеть – это совокупность различного напряжения линий и подстанций, задачей которых является передача и распределение электроэнергии.

Электрические сети делят по назначению, месту прокладки, величине напряжения, принципу построения, роду тока и некоторым другим признакам.

Классификация электрических сетей по роду тока

По роду тока электрические сети традиционно разделяют на два вида – сети переменного и постоянного тока.

Наиболее распространёнными являются сети переменного тока. Постоянный ток наиболее часто применяют для питания электрифицированного транспорта, под него и сооружают линии электроснабжения постоянным током. В некоторых отдельных случаях на промышленных предприятиях возникает необходимость в построении систем электропитания постоянным током, например, для электролиза растворов или электрометаллургии, а также при наличии электроприводов постоянного тока.

В последнее время все больший интерес проектировщиков вызывают высоковольтные линии электропередачи постоянного тока (HVDC), активно применяемы для передачи электроэнергии от электростанций альтернативной энергетики.

Плюс таких систем в их большей экономичности, возможности параллельной работы с различными линиями постоянного тока (например, линии электропередач переменного тока с частотами 50 Гц и 60 Гц невозможно запустить на параллельную работу), а также в отсутствии необходимости синхронизации частот ЛЭП.

Классификация электрических сетей по величине напряжения

По напряжению электрические сети делят классически на два вида – до 1000 В и выше 1000 В. Для избегания путаниц и удобства эксплуатации серийных электротехнических изделий в установках переменного тока приняты следующие стандарты напряжений:

  • До 1000 В – 127 В, 220 В, 380 В, 660 В;
  • Выше 1000 В – 3 кВ, 6 кВ, 10 кВ, 20 кВ, 35 кВ, 110 кВ, 150 кВ, 220 кВ, 330 кВ, 500 кВ, 750 кВ;

По условиям нормальной эксплуатации электроприемники, в зависимости от назначения, допускают строго ограниченные отклонения напряжения от его номинального значения. Для поддержания напряжений на заданном уровне нужно компенсировать его потерю в трансформаторах. Именно для этой цели номинальные напряжения генераторов, а также вторичных обмоток трансформаторов имеют номиналы на 5% больше чем электроприемники.

Для сетей местного освещения могут применять малые напряжения, а именно 12 В, 24 В, 36 В.

Классификация электрических сетей по назначению

По назначению сети электрические делят на распределительные и питающие.

Питающая линия – это линия, осуществляющая питание подстанции (П) или распределительного пункта (РП) от центра питания (ЦП) без распределения электрической энергии по ее длине.

Распределительная линия – линия, осуществляющая питание ряда трансформаторных подстанций от РП или ЦП.

В сетях напряжением до 1000 В питающими линиями называют линии идущие от трансформаторных подстанций к распределительным щитам или пунктам, а распределительными называют линии, которые идут непосредственно от распределительных щитов или пунктов к электроприемникам.

Ниже показана схема распределения высокого напряжения с наличием питающей и распределительной сети (а)) и только распределительной (б)):

Сети высокого напряжения сооружают в случаях отдаленности на довольно большое расстояние источника напряжения или большого количества трансформаторных подстанций, которые значительно отдалены друг от друга, например, при электроснабжении крупных промышленных предприятий или городов.

Классификация электрических сетей по принципу построения

По принципу построения подразделяют электрические сети на замкнутые и разомкнутые.

Разомкнутая сеть – это совокупность разомкнутых линий получающих питание от одного общего источника питания ИП с одной стороны (рисунок ниже):

Ее главным недостатком можно назвать прекращения питания всех электроприемников участка, на котором произошло отключение при обрыве линии.

В замкнутой системе все наоборот  — питание поступает от двух источников ИП и при обрыве магистрали в любом месте питание электроприемников не прекратится. Ниже показана простейшая схема замкнутой сети:

Например, в случае обрыва магистрали в точке К электроприемники 1,2,3,4 будут получать питание по верхней магистрали, а 5,6,7,8 по нижней. В зависимости от требований надежности электроснабжения замкнутые системы могут иметь один и более источников питания. Ниже показан пример схемы с двухсторонним питанием:

Классификация электрических сетей по месту прокладки

Различают наружные и внутренние сети.

Наружные сети могут выполнятся голыми проводами, подвешенными на опорах (воздушные линии), а также специальными кабелями проложенными в блоках (подземные линии), траншеях, коллекторах.

Внутренние сети прокладывают внутри зданий с помощью изолированных проводов (провод с изоляцией), кабелей, шин (токопроводов).

Источник: https://elenergi.ru/klassifikaciya-elektricheskix-setej.html

Виды нейтралей электроустановок

Нейтраль – та часть электроустановки, которая имеет нулевой потенциал относительно физической земли или ее токопроводящих элементов. Трехфазные цепи могут иметь как технологическую, имеющую физическое соединение с токопроводящими частями, так и конструктивную, отдельную от них нейтраль. Это зависит от способа соединения выходных обмоток силовых трансформаторов.

ЭТО ИНТЕРЕСНО:  Как подобрать узо для группы автоматов

В первом случае – звездой, во втором – треугольником. Поскольку в этом проводнике течет ток, что происходит в результате или аварии, или технологического перекоса фаз, выражение «режим работы нейтрали» имеет полное право на существование. О том, каким он может быть, и о способах подключения нейтральных проводников пойдет речь в этой статье.

Режимы заземления нейтрали

В экзаменационных билетах по электробезопасности для монтеров, работающих с установками напряжением до 1000 вольт, есть вопрос: «С какой нейтралью должны работать электрические сети напряжением 10 кВ?» Правильный ответ: «С изолированной». Однако существуют и другие режимы работы нейтралей в электроустановках:

  1. Эффективное заземление.
  2. Глухое заземление.

От их выбора зависит множество факторов:

  • Бесперебойность электроснабжения.
  • Безопасность обслуживающего персонала и электроустановок в случае замыкания одной из фаз на землю.
  • Величины токов в местах повреждений.
  • Схема построения релейной защиты.

Различные типы электрических сетей по-разному подключаются к нейтрали и реагируют на аварийные ситуации.

Высоковольтные магистральные электросети

К ним относятся все электросети, линейное (между фазными проводниками) напряжение в которых превышает 35 кВ. Выходные (статорные) обмотки промышленных электрогенераторов соединяют треугольником. Это связано с меньшим уровнем электрических потерь и отсутствием технологического перекоса фаз, что напрямую влияет на качество подаваемой потребителям электрической энергии.

При однофазном пробое на физическую землю – в случае обрыва провода или изменения диэлектрических свойств изоляторов на опорах, происходит падение линейного напряжения до нуля в аварийной фазе и рост в 1,7 раза в работоспособных.

Чтобы избежать электрического пробоя изоляторов рабочих фаз и не увеличивать их без того немалые размеры, в этом случае применяется способ подключения, называемый «эффективной нейтралью». Он заключается в том, что на промежуточных силовых подстанциях выходные обмотки трансформаторов, использующиеся для обеспечения их внутренних нужд (например, обогрева, сигнализации), включаются по схеме «звезда», общий провод которой наглухо соединяется с физической землей.

В результате напряжение в неповрежденных фазах растет не более, чем в 1,4 раза, а ток короткого замыкания ограничивается на уровне, который недостаточен для срабатывания реле защиты. Это позволяет не прерывать электроснабжение на время большее, чем то, что определено нормативами правил эксплуатации электроустановок для различных типов потребителей.

Магистральные электросети среднего напряжения

Электрическая сеть, линейное напряжение в которой от 6 до 35 кВ. Обмотки силовых трансформаторов соединяются звездой. Нейтраль изолированная, она не имеет физического контакта с землей. Это делается по трем причинам:

  1. Меньшие токи, что позволяет уменьшить размеры изоляторов – меньше вес, меньше нагрузка на опоры, возможна экономия при их производстве и монтаже.
  2. В сетях с изолированной нейтралью токи между фазами имеют емкостной характер, поэтому при пробое одной из них не возникает короткого замыкания. Ток как бы стекает с поврежденного проводника на землю и рассеивается ею.
  3. Нет необходимости тянуть четвертую линию, не имеющую функционального назначения.

В результате при аварии линейное напряжение растет в 1,7 раза, что для промежуточных силовых трансформаторов на линии не является критическим режимом. Электроснабжение продолжается по двум оставшимся линиям. Опасность представляет только оборванный провод в радиусе 10–30 метров – создается зона, где возможно возникновение так называемого шагового напряжения.

Однако при малом сопротивлении физической земли (в результате дождей, при прокладке электролинии по болотам) ток в поврежденном проводнике может достигнуть значения, достаточного для возникновения электрической дуги. В этом случае применяется так называемая компенсированная нейтраль.

Сущность компенсированной нейтрали заключается в том, что общий для всех обмоток провод все же имеет контакт с землей, но через сопротивление. Оно может иметь индуктивный или активный характер. В первом случае устройство называют дугогасящим реактором.

Ток, через него текущий, находится в противофазе с тем, который идет на физическую землю через поврежденный проводник. Они компенсируют друг друга, поэтому электрическая дуга не зажигается. Заземление нейтрали через резистор в нашей стране практически не применяется. А если и используется, то в качестве элемента, помогающего определить место повреждения – при его включении параллельно дугогасящему реактору происходит срабатывание релейной защиты на аварийном участке.

В нашей стране количество линий с компенсированной нейтралью равно 20% от числа всех электрических магистралей. А ее полную изоляцию используют еще только в Финляндии. Большинство европейских стран применяет подключение нейтрали через активное сопротивление большой величины.

Изолированная нейтраль также применяется в трехфазных сетях напряжением 0,4 кВ, которые прокладываются в шахтах, рудниках и на торфяных выработках. Везде, где пропуск электрического тока по физической земле может привести к поражению людей. А также в передвижных электроустановках при невозможности создания надежного контакта с заземлителем.

Низковольтные электрические сети

Все трехфазные электрические линии напряжением 0,4 кВ, от которых питаются конечные потребители, исполняются четырехпроводными. Это так называемые сети с глухозаземленной нейтралью. Выходные обмотки силовых линейных трансформаторов соединяются звездой, а их общий проводник – с физической землей. Делается это исходя из двух соображений:

  1. При однофазном замыкании на землю происходит мгновенное отключение всей линии, что необходимо для предотвращения поражения людей и животных электрическим током. Для этого в ней между фазными проводниками устанавливаются автоматы, реагирующие на сверхтоки (короткое замыкание) или дифференциальный ток.
  2. Кроме линейного напряжения в 380 (400) вольт, используется и фазное (между проводником и нейтралью), равное 220 вольт. При отсутствии надежного контакта с физической землей возможно возникновение технологического перекоса фаз, в результате которого у одного из потребителей на вводах будет 100–110 вольт, а у других – 290–300 вольт, что приводит к выходу из строя электрических приборов.

Если вы увидели на линии высокого напряжения оборванный провод, не подходите к нему близко, наверняка он находится под напряжением, поскольку в режиме изолированной нейтрали мгновенного отключения не происходит. И не относитесь к нейтральному проводнику четырехпроводной бытовой линии 0,4 кВ как к абсолютно безопасной железке. В случае неисправности или аварии по нему течет смертельно опасный ток.

Источник: https://electriktop.ru/baza-znaniy/vidy-nejtralej-elektroustanovok.html

Сверхвысокое напряжение

750 кВ, 500 кВ, 330 кВ. Линии монтируются на высоких, мощных арочных столбах, на каждой фазе используется два провода. Количество изоляторов не менее 14, также с целью снижения коронных разрядов блокирования возможности возникновения электрической дуги.

Высокое напряжение (ВН)

220 кВ, 150 кВ, 110 кВ. В линиях передач исползуются столбы из материалов с повышенной прочностью на излом, между проводами инсталируется мощная изоляция, выполненная из 10-40 (2х20) изоляторов, закрепленных на траверсах. На напряжении 150 кВ используется 8 или 9 изоляторов, на напряжении 110 кВ — шесть. По всей длине ЛЭП подвешивают молниезащитные тросы.

Среднее первое напряжение (СН-1)

35 кВ. В таких линиях передач исползуются столбы из материалов с повышенной прочностью на излом, между проводами инсталируется мощная изоляция, выполненная из специальных изоляторов, закрепленных на траверсах. Молниезащитные стальные тросы подвешивают только на тех участках ЛЭП, где высока опасность грозы (например возвышенности).

Среднее второе напряжение (СН-2)

20 кВ, 10 кВ, 6 кВ, 1 кВ. Линии передачи электроэнергии для таких сетей размещают на одиночных столбах увеличенного (по сравнению с сетями до 20 кВ) размера. Также увеличивается размер изоляторов, и расстояние между кабелями.

Низкое напряжение (НН)

0,38 кВ, 0,22 кВ, 0,11 кВ и ниже. Конструктивно представляют из себя бытовую или промышленную проводку локального характера, либо линии электропередач на одиночных столбах, вкопанных в грунт. В таких линиях часто применяется неизолированный кабель для лэп, или даже кабель медный ввгнг, подвешенный на несущем тросе.

Источник: https://c-e-c.ru/stati/klasselset.php

Что такое электростанция. Оборудование электростанций. Энергетика. Энергосистема

Электрическая станция — совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории.

Существует множество типов электростанций. Отличия заключаются в технических особенностях и исполнении, а также в виде используемого источника энергии. Но несмотря на все различия большинство электростанций используют для своей работы энергию вращения вала генератора.

Станции разных типов объединены в Единую энергетическую систему, позволяющую рационально использовать их мощности, снабжать всех потребителей.

Основное оборудование электростанций

К основному оборудованию электростанций можно отнести:

  • генераторы;
  • турбины;
  • котлы;
  • трансформаторы;
  • распределительные устройства;
  • двигатели;
  • выключатели;
  • разъединители;
  • линии электропередач;
  • средства автоматики и релейной защиты

Энергосистемы

Энергосистемы — совокупность энергетических ресурсов всех видов, методов и средств их получения, преобразования, распределения и использования, обеспечивающих снабжение потребителей всеми видами энергии.

Что входит в энергосистему

В энергосистемы входят:

  • электроэнергетическая система;
  • система нефте- и газоснабжения;
  • система угольной промышленности;
  • ядерная энергетика;
  • нетрадиционная энергетика.

Обычно все эти системы объединяются в масштабах страны в единую энергетическую систему, в масштабах нескольких районов — в объединённые энергосистемы. Объединение отдельных энергоснабжающих систем в единую систему также называют межотраслевым топливно-энергетическим комплексом, оно обусловлено прежде всего взаимозаменяемостью различных видов энергии и энергоресурсов

Часто под энергосистемой в более узком смысле понимают совокупность электростанций, электрических и тепловых сетей, которые соединёны между собой и связаны общими режимами непрерывных производственных процессов преобразования, передачи и распределения электрической и тепловой энергии, что позволяет осуществлять централизованное управление такой системой.

В современном мире снабжение потребителей электроэнергией производится от электростанций, которые могут находиться вблизи потребителей или могут быть удалены от них на значительные расстояния. В обоих случаях передача электроэнергии осуществляется по линиям электропередачи.

Однако в случае удалённости потребителей от электростанции передачу приходится осуществлять на повышенном напряжении, а между ними сооружать повышающие и понижающие подстанции.

Через эти подстанции с помощью электрических линий электростанции связывают друг с другом для параллельной работы на общую нагрузку, также через тепловые пункты с помощью теплопроводов, только на гораздо меньших расстояниях связывают между собой ТЭЦ и котельные.

Совокупность всех этих элементов называют энергосистемой, при таком объединении возникают существенные технико-экономические преимущества:

  • существенное снижение стоимости электро- и теплоэнергии;
  • значительное повышение надёжности электро- и теплоснабжения потребителей;
  • повышение экономичности работы различных типов электростанций;
  • снижение необходимой резервной мощности электростанций.

Энергетика

Энергетика — область общественного производства, охватывающая энергетические ресурсы, выработку, преобразование, передачу и использование различных видов энергии. Энергетика каждого государства функционирует в рамках созданных соответствующих энергосистем.

Её целью является обеспечение производства энергии путём преобразования первичной, природной, энергии во вторичную, например в электрическую или тепловую энергию. При этом производство энергии чаще всего происходит в несколько стадий:

  • получение и концентрация энергетических ресурсов, примером может послужить добыча, переработка и обогащение ядерного топлива;
  • передача ресурсов к энергетическим установкам, например доставка мазута на тепловую электростанцию;
  • преобразование с помощью электростанций первичной энергии во вторичную, например химической энергии угля в электрическую и тепловую энергию;
  • передача вторичной энергии потребителям, например по линиям электропередачи.

Энергетика как наука, в соответствии с номенклатурой специальностей научных работников, утверждённой Министерством образования и науки Российской Федерации, включает следующие научные специальности:

  • Энергетические системы и комплексы;
  • Электрические станции и электроэнергетические системы;
  • Ядерные энергетические установки;
  • Промышленная теплоэнергетика;
  • Энергоустановки на основе возобновляемых видов энергии;
  • Техника высоких напряжений;
  • Тепловые электрические станции, их энергетические системы и агрегаты.

Электроэнергетика

Электроэнергетика — это подсистема энергетики, охватывающая производство электроэнергии на электростанциях и её доставку потребителям по линии электропередачи.

Центральными её элементами являются электростанции, которые принято классифицировать по виду используемой первичной энергии и виду применяемых для этого преобразователей.

Необходимо отметить, что преобладание того или иного вида электростанций в определённом государстве зависит в первую очередь от наличия соответствующих ресурсов.

Электроэнергетику принято делить натрадиционную и нетрадиционную.

Традиционная электроэнергетика

Характерной чертой традиционной электроэнергетики является её давняя и хорошая освоенность, она прошла длительную проверку в разнообразных условиях эксплуатации. Основную долю электроэнергии во всём мире получают именно на традиционных электростанциях, их единична электрическая мощность очень часто превышает 1000 Мвт. Традиционная электроэнергетика делится на несколько направлений.

ЭТО ИНТЕРЕСНО:  Что такое коробка уравнивания потенциалов

Тепловая энергетика (теплоэнергетика)

В этой отрасли производство электроэнергии производится на тепловых электростанциях (ТЭС), использующих для этого химическую энергию органического топлива.

Тепловые электростанции делятся на:

  • Паротурбинные электростанции, на которых энергия преобразуется с помощью паротурбинной установки;
  • Газотурбинные электростанции, на которых энергия преобразуется с помощью газотурбинной установки;
  • Парогазовые электростанции, на которых энергия преобразуется с помощью парогазовой установки.

Теплоэнергетика в мировом масштабе преобладает среди традиционных видов, на базе нефти вырабатывается 39% всей электроэнергии мира, на базе угля — 27%, газа — 24%, то есть всего 90% от общей выработки всех электростанций мира. Энергетика таких стран мира, как Польша и ЮАР практически полностью основана на использовании угля, а Нидерландов — газа. Очень велика доля теплоэнергетики в Китае, Австралии, Мексике.

Гидроэнергетика

В этой отрасли электроэнергия производится на гидроэлектростанциях (ГЭС), использующих для этого энергию водного потока.

ГЭС преобладает в ряде стран — в Норвегии и Бразилии вся выработка электроэнергии происходит на них. Список стран, в которых доля выработки ГЭС превышает 70 %, включает несколько десятков.

Ядерная энергетика

Отрасль, в которой электроэнергия производится на атомных электростанциях (АЭС), использующих для этого энергию управляемой цепной ядерной реакции, чаще всего урана и плутония.

По доле АЭС в выработке электроэнергии первенствует Франция, около 80 %. Преобладает она также в Бельгии, Республике Корея и некоторых других странах. Мировыми лидерами по производству электроэнергии на АЭС являются США, Франция и Япония.

Нетрадиционная электроэнергетика (Альтернативная энергетика)

Большинство направлений нетрадиционной электроэнергетики основаны на вполне традиционных принципах, но первичной энергией в них служат либо источники локального значения, например ветряные, геотермальные, либо источники находящиеся в стадии освоения, например топливные элементы или источники, которые могут найти применение в перспективе, например термоядерная энергетика. Характерными чертами нетрадиционной энергетики являются их экологическая чистота, чрезвычайно большие затраты на капитальное строительство (например для солнечной электростанции мощностью 1000 Мвт требуется покрыть весьма дорогостоящими зеркалами площадь около 4-х км²) и малая единичная мощность.

Направления нетрадиционной энергетики:

  • Малые гидроэлектростанции
  • Ветровая энергетика
  • Геотермальная энергетика
  • Солнечная энергетика
  • Биоэнергетика
  • Установки на топливных элементах
  • Водородная энергетика
  • Термоядерная энергетика.

Также можно выделить важное из-за своей массовости понятие — малая энергетика, этот термин не является в настоящее время общепринятым, наряду с ним употребляются термины локальная энергетика, распределённая энергетика, автономная энергетика и др. Чаще всего так называют электростанции мощностью до 30 МВт с агрегатами единичной мощностью до 10 МВт.

К ним можно отнести как экологичные виды энергетики, перечисленные выше, так и малые электростанции на органическом топливе, такие как дизельные электростанции (среди малых электростанций их подавляющее большинство, например в России — примерно 96 %), газопоршневые электростанции, газотурбинные установки малой мощности на дизельном и газовом топливе.

Электрические сети

Электрическая сеть — совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии. Электрическая сеть обеспечивает возможность выдачи мощности электростанций, её передачи на расстояние, преобразование параметров электроэнергии (напряжения, тока) на подстанциях и её распределение по территории вплоть до непосредственных электроприёмников.

Электрические сети современных энергосистем являются многоступенчатыми, то есть электроэнергия претерпевает большое количество трансформаций на пути от источников электроэнергии к её потребителям.

Также для современных электрических сетей характерна многорежимность, под чем понимается разнообразие загрузки элементов сети в суточном и годовом разрезе, а также обилие режимов, возникающих при выводе различных элементов сети в плановый ремонт и при их аварийных отключениях.

Эти и другие характерные черты современных электросетей делают их структуры и конфигурации весьма сложными и разнообразными.

Теплоснабжение

Жизнь современного человека связана с широким использованием не только электрической, но и тепловой энергии. Для того, чтобы человек чувствовал себя комфортно дома, на работе, в любом общественном месте, все помещения должны отапливаться и снабжаться горячей водой для бытовых целей.

Так как это напрямую связано со здоровьем человека, в развитых государствах пригодные температурные условия в различного рода помещениях регламентируются санитарными правилами и стандартами.

Такие условия могут быть реализованы в большинстве стран мира только при постоянном подводе к объекту отопления (теплоприёмнику) определённого количества тепла, которое зависит от температуры наружного воздуха, для чего чаще всего используется горячая вода с конечной температурой у потребителей около 80-90°C. Также для различных технологических процессов промышленных предприятий может требоваться так называемый производственный пар с давлением 1—3 МПа.

В общем случае снабжение любого объекта теплом обеспечивается системой, состоящей из:

  • источника тепла, например котельной;
  • тепловой сети, например из трубопроводов горячей воды или пара;
  • теплоприёмника, например батареи водяного отопления.

Централизованное теплоснабжение

Характерной чертой централизованного теплоснабжения является наличие разветвлённой тепловой сети, от которой питаются многочисленные потребители (заводы, здания, жилые помещения и пр.).

Для централизованного теплоснабжения используются два вида источников:

  • Теплоэлектроцентрали (ТЭЦ), которые также могут вырабатывать и электроэнергию;
  • Котельные, которые делятся на:

Децентрализованное теплоснабжение

Источник: https://energosmi.ru/archives/9500

Что такое энергосеть и как она работает

(State Dept.)

Мы привыкли видеть высокие столбы с уходящими вдаль проводами. Все знают, что это линии электропередач, но могут не задумываться на тем, что они являются частью энергосети.

Сначала нужно произвести электричество

(State Dept.)

Энергосеть начинается там, где производится электричество. Когда-то электричество генерировалось только на центральных электростанциях, которые, как правило, работали на ископаемом топливе – угле или природном газе – или же на ядерном топливе.

Сегодня способов выработки энергии намного больше, и многие из них являются экологически чистыми. И это намного лучше, так как ископаемые виды топлива при сгорании выделяют вредные парниковые газы, ускоряющие глобальное потепление.

Атомные электростанции используют уран, который, как и ископаемые виды топлива, является невозобновляемым источником энергии и может быть опасным загрязнителем окружающей среды.

Вот почему так важна возобновляемая энергия: солнечное тепло, ветер и другие возобновляемые природные ресурсы неисчерпаемы и экологически чисты. Кроме того, они дешевле, потому что производят электричество ближе к потребителю, что означает меньшую протяженность линий электропередач и меньшее количество дорогостоящих инфраструктурных объектов.

Передача и распределение

(State Dept.)

После того, как электроэнергия генерирована, ее нужно передать на расстояние и распределить между потребителями. Объекты передачи и распределения образуют энергосеть.

Как правило, электричество передается под очень высоким напряжением по линиям электропередач, которыми усеян ландшафт. Чем выше напряжение, тем меньшая сила тока потребуется для передачи такого же количества энергии. Это уменьшает сопротивление и потери электроэнергии.

Когда электроэнергия высокого напряжения достигает районов, где находятся потребители, трансформаторы преобразуют ее в ток более низкого напряжения, распределяемый по домам и предприятиям.

Потребители и “затребованная нагрузка”

Иллюстрация: розетка и вилка (State Dept.)

Для освещения, питания компьютеров, бытовой техники, систем отопления и охлаждения, люди используют электричество из сети. Поставщик должен обеспечить так называемую “затребованную нагрузку”, общий объем необходимого потребителям электричества.

Есть и свои “часы пик”, например, в темное время суток, когда включается больше ламп освещения, или в самые жаркие или холодные дни.

Сложность управления энергосистемой заключается в необходимости достигать баланса напряжения в любое время года и в течение суток и поставлять нужное количество электроэнергии.

Для увеличения или уменьшения передачи электроэнергии в соответствии с потребительским спросом операторы сети используют сложные механизмы “балансировки нагрузки”, предусматривающие мониторинг и автоматическое распределение. Генерируемые на месте распределенные энергетические ресурсы также включаются в энергопотоки, что способствует снижению себестоимости поставок электричества и улучшает экологическую ситуацию.

Источник: https://share.america.gov/ru/%D1%87%D1%82%D0%BE-%D1%82%D0%B0%D0%BA%D0%BE%D0%B5-%D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D0%BE%D1%81%D0%B5%D1%82%D1%8C-%D0%B8-%D0%BA%D0%B0%D0%BA-%D0%BE%D0%BD%D0%B0-%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%B0%D0%B5/

Что такое перегрузка электрической сети и чем она опасна? — Электрика

Говоря о перегрузке электросети, нужно отметить, что перегрузка приводит не только к мелким неисправностям, таким как, мигание света, сбои в работе электроприборов.

Из-за перегрузки сети происходит нагрев проводов и кабелей, что при неправильно сделанной защите, может привести к пожару, повреждениям и неисправностям электроприборов.

Как следствие, незапланированные ремонт телевизоров или ремонт холодильников и другой бытовой техники постоянно включенной в электросеть. Разберем основные причины перегрузки сети и способы устранения этой проблемы.

Перегрузка электросети – основные причины

Основными причинами перегрузки электросети являются:

  • Неправильно распределенная нагрузка;
  • Включение в сеть неисправного прибора.

  Группы освещения квартиры

Неправильно распределенная нагрузка

Чаще, перегрузка в электросети не является неисправностью. Это скорее просчет при создании  проекта электроснабжения квартиры и ее монтаже. Если в одну группу розеток включили большое количество розеток, при этом неправильно рассчитали номинал автомата защиты, то перегрузка неизбежна.

Например, на кухне было две розетки. Решив увеличить количество розеток, мастера не позаботились о создании новой группы, а шлейфом смонтировали еще несколько розеток. Каждая отдельная розетка не перегружает цепь, а при включении нескольких приборов приводит к перегрузке.

Хочу напомнить, что при перегрузки электросети автоматические выключатели не срабатывают моментально, как при коротком замыкании. В устройстве автомата защиты, для защиты от перегрузки есть биметаллическая пластина, нагрев которой отключает аварийную цепь. Для нагрева пластины и отключения цепи при перегрузки требуется несколько минут.

  Автоматы защиты, зачем они нужны
Поэтому, если у вас периодически срабатывают автоматы защиты, при включении бытовых приборов, то вполне вероятна перегрузка электросети и неправильное распределение нагрузки или неправильно подобранный номинал уставки автомата защиты.

Сложность предварительного расчета каждой группы розеток квартиры, создало одно простое правило монтажа. На одну розеточную группу не «вешайте» более 4 розеток. При таком распределении нагрузки в сочетании с медным кабелем 3×2,5 мм² и автоматом защиты в 25 Ампер, никогда не будет перегрузки групповой цепи.

Включение в сеть неисправного прибора

Но перегрузка электросети может появляться не только при неправильном распределении нагрузки. Неисправный электроприбор, вполне, может потреблять повышенный ток и приводить к перегрузке сети.

Если отключение автомата защиты происходит только при работе «подозреваемого» прибора, а мощность прибора не более 2500Вт, то прибор нужно ремонтировать или менять.

Перегрузка групп освещения

Перегрузка групп освещения, редко встречаемая неисправность. Как правило, с группами освещения проблем с перегрузкой нет. Правда, если вместо одной люстры в комнате, сделать новые гирлянды точечных светильников по всему потолку, то перегрузка и в группах освещения вполне может быть.

Здесь, то же есть выход. Современные экономные лампы значительно снижают нагрузку освещения, и это может стать решением проблемы перегрузки.

  Стиральная машина бьет током

Как устранить перегрузку электросети

Как бы то ни было, если у Вас периодически «вырубаются» автоматы защиты, причем происходит это через некоторое время после включения приборов, то очень велика проблема перегрузки в сети.

Решений несколько:

  • Если сечение кабеля позволяет, увеличьте номинал автомата защиты;
  • Если сечение кабеля или проводов минимальны, например старый алюминий, то разделите розетки этой группы и проведите дополнительную группу розеток от квартирного щитка или от этажного щита.
  • Если у вас стоит старый автомат защиты, то вполне возможно ложное отключение из-за старости автомата. Снимите старый автоматический выключатель и установите новый автоматический выключатель, это может помочь.
  • И последнее, не пользуйтесь тройниками и минимально используйте удлинители. Большое количество розеток, провоцирует включение дополнительных бытовых приборов и может приводить к перегрузке.

Важно. Частое отключение автоматов защиты, реальное следствие перегрузки. Относиться к перегрузке нужно серьезно. Перегрузка это нагрев проводки, а где нагрев, там и до пожара недалеко.

Ehto.ru

Похожие посты:

  • Шкафы распределительные электрические ШР и ШРС, Рубрика Электрощиток
  • Техническое обслуживание высоковольтного оборудования, Рубрика Ремонт электрики
  • Что влияет на стоимость электромонтажных работ, Рубрика Ремонт электрики
  • Какие бывают бензиновые генераторы, Рубрика Строительство
  • Внутренние электросети: устройство и правила монтажа, Рубрика Монтаж электрики
  • Техническое обслуживание силовых трансформаторов, Рубрика Справочник электрика
  • Светодиодные светильники уличного освещения, Рубрика Строительство

Источник: https://radiosxemu.ru/chto-takoe-peregruzka-elektricheskoj-seti-i-chem-ona-opasna.html

Понравилась статья? Поделиться с друзьями:
ЭлектроМастер
Как работает преобразователь напряжения

Закрыть